Changqing Yellow River Super-long Bridge of Zhengzhou-Ji'nan HSR is a partial cable-stayed bridge with concrete main girder and a unit length of 1,080 m.Studies are carried out on the key technologies of bridge de...Changqing Yellow River Super-long Bridge of Zhengzhou-Ji'nan HSR is a partial cable-stayed bridge with concrete main girder and a unit length of 1,080 m.Studies are carried out on the key technologies of bridge design,and the main conclusions are as follows:The whole unit adopts the supporting system of tower pier consolidation and tower-beam separation,and each pier is provided with seismic mitigation and isolation bearing;shaped-steel reinforced concrete bridge tower is adopted to bring into full play the tensile performance of steel and the compressive performance of concrete,and avoid the construction challenges of setting up multi-layer and multi-stirrup reinforcement while improving the bearing capacity of section;a new type of double-side and bi-directional anti-skid anchorage device is adopted for the cable saddle of wire divider pipe in order to withstand the unbalanced cable force,and verify the reliability of the anti-skid anchorage device by solid model test;and large-segment cantilever pouring design is adopted for the main girder with a maximum segment length of 8 m to effectively shorten the construction period of the bridge.展开更多
A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypi...A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypical materials are simulated using different indicators in the centrifuge model.The silver sand,the shaft and the pile cap are simulated according to the natural density,the compressive stiffness and the bending stiffness,respectively.The finite element method(FEM)is implemented and analyzed in ANSYS,in which the stress field during the undisturbed soil stage,the boring stage,the concrete-casting stage and the curing stage are discussed in detail.Comparisons in terms of load-settlement,shaft axial force distribution and lateral friction between the numerical results and the test data are carried out to investigate the bearing behaviors of super-long rock-socketed bored pile groups under loading and unloading conditions.Results show that there is a good agreement between the centrifuge modeling tests and the FEM.In addition,the load distribution at the pile top is complicated,which is related to the stiffness of the cap,the corresponding assumptions and the analysis method.The shaft axial force first increases slightly with depth then decreases sharply,and the rate of decrease in rock is greater than that in sand and soil.展开更多
Studies have found that oxygen-rich-containing functional groups in carbon-based materials can be used as active sites for the storage performance of K^(+),but the basic storage mechanism is still unclear.Herein,we co...Studies have found that oxygen-rich-containing functional groups in carbon-based materials can be used as active sites for the storage performance of K^(+),but the basic storage mechanism is still unclear.Herein,we construct and optimize 3D honeycomb-like carbon grafted with plentiful COOH/C=O functional groups(OFGC)as anodes for potassium ion batteries.The OFGC electrode with steady structure and rich functional groups can effectively contribute to the capacity enhancement and the formation of stable solid electrolyte interphase(SEI)film,achieving a high reversible capacity of 230 mAh g^(-1) at 3000 mA g^(-1) after 10,000 cycles(almost no capacity decay)and an ultra-long cycle time over 18 months at 100 mA g^(-1).The study results revealed the reversible storage mechanism between K^(+)and COOH/C=O functional groups by forming C-O-K compounds.Meanwhile,the in situ electrochemical impedance spectroscopy proved the highly reversible and rapid de/intercalation kinetics of K+in the OFGC electrode,and the growth process of SEI films.In particular,the full cells assembled by Prussian blue cathode exhibit a high energy density of 113 Wh kg^(-1) after 800 cycles(calculated by the total mass of anode and cathode),and get the light-emitting diodes lamp and ear thermometer running.展开更多
Liaohe super-heavy crude oil was separated into its components, namely saturates, aromatics, resins, and asphaltenes (SARA), by the group separation method. Several solvents were used to extract different forms of m...Liaohe super-heavy crude oil was separated into its components, namely saturates, aromatics, resins, and asphaltenes (SARA), by the group separation method. Several solvents were used to extract different forms of metallic elements from crude oil. The metallic elements, such as calcium, nickel, iron and manganese, in crude oil, SARA and extract samples were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results demonstrate that the contents of calcium, nickel, iron, and manganese gradually increase in saturates, aromatics, resins, and asphaltenes, suggesting that the abundance of the four metallic elements in asphaltenes is much higher than that in the other groups. For example, the content of calcium in asphaltenes reaches a maximum of 7,920 pg/g. Among the SARA components of Liaohe super-heavy crude oil, resins account for more than 50 wt%, suggesting that the total amount of the four metallic elements are higher in the resin component than in other components. The four metallic elements mainly exist in the form of organic metallic compounds in crude oil. Further analysis shows that calcium and manganese elements exist mainly as metal salts of petroleum acids, and the majority of the iron and all the nickel exist mainly as metalloporphyrin and non-metalloporphyrin compounds.展开更多
In this study, petroleum acids were extracted from the super-heavy oil of Liaohe oilfield, North-east China, by using acetic acid, and their structural components and properties were investigated by using FT-IR and MS...In this study, petroleum acids were extracted from the super-heavy oil of Liaohe oilfield, North-east China, by using acetic acid, and their structural components and properties were investigated by using FT-IR and MS. Moreover, the trace metal contents in the super-heavy oil sample before and after acetic acid treatment were also measured in this work. The results showed that naphthenic acids were the main component of petroleum acids in Liaohe super-heavy oil, and the content of naphthenic acids with double rings was higher than that of other naphthenic acids. It can be concluded that petroleum acids in Liaohe super-heavy oil mainly consist of naphthenic acids, with a carbon number of around 11–69 and containing one to six naphthenic rings and/or one to two aromatic rings, and mainly exists in form of metal salts of petroleum acid. The molecular weight of petroleum acids is in the range of 190–1000.展开更多
In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Bas...In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.展开更多
Nanowire(NW) structures is an alternative candidate for constructing the next generation photoelectrochemical water splitting system, due to the outstanding optical and electrical properties. NW photoelectrodes compar...Nanowire(NW) structures is an alternative candidate for constructing the next generation photoelectrochemical water splitting system, due to the outstanding optical and electrical properties. NW photoelectrodes comparing to traditional semiconductor photoelectrodes shows the comparatively shorter transfer distance of photo-induced carriers and the increase amount of the surface reaction sites, which is beneficial for lowering the recombination probability of charge carriers and improving their photoelectrochemical(PEC) performances. Here, we demonstrate for the first time that super-long Cu_2O NWs, more than 4.5 μm,with highly efficient water splitting performance, were synthesized using a cost-effective anodic alumina oxide(AAO) template method. In comparison with the photocathode with planar Cu_2O films, the photocathode with Cu_2O NWs demonstrates a significant enhancement in photocurrent, from –1.00 to –2.75 mA/cm^2 at –0.8 V versus Ag/AgCl. After optimization of the photoelectrochemical electrode through depositing Pt NPs with atomic layer deposition(ALD) technology on the Cu_2O NWs, the plateau of photocurrent has been enlarged to –7 mA/cm^2 with the external quantum yield up to 34% at 410 nm. This study suggests that the photoelectrode based on Cu_2O NWs is a hopeful system for establishing high-efficiency water splitting system under visible light.展开更多
Super-heavy oil is a significant unconventional energy source,and more than 30 years of research have shown that steam-assisted gravity drainage(SAGD)technology is suitable for thick super-heavy oil reservoirs.Recentl...Super-heavy oil is a significant unconventional energy source,and more than 30 years of research have shown that steam-assisted gravity drainage(SAGD)technology is suitable for thick super-heavy oil reservoirs.Recently,more and more thin-layer super-heavy oil reservoirs have been discovered in China,while their deep buried depth and serous heterogeneity make the existing SAGD technology difficult to apply,so it is urgent to improve the existing SAGD technology for the thin-layer super-heavy oil.To this end,this paper focuses on the enlightenment of field application in SAGD technology.Firstly,based on typical SAGD field projects,the development history of SAGD technology in the world was reviewed,and the influence of reservoir physical properties on the application of SAGD technology in thin-layer superheavy oil reservoirs was analyzed.Secondly,the well pattern,wellbore structure,pre-heating,artificial lift,and monitor technique of SAGD were detailed described,and their adjustment direction was expounded for the development of thin-layer super-heavy oil reservoirs.Lastly,the gas-and solventassistant SAGD were comprehensively evaluated,and their application potential in thin-layer superheavy oil reservoirs was studied.The research results can provide theoretical guidance for the application of SAGD technology in thin-layer super-heavy oil reservoirs.展开更多
In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditio...In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.展开更多
The center of the stability island of super-heavy nuclei(SHN)is the subject of intense experimental and theoretical investigations and has potential technological applications.^(298)^(114) Fl lies in the Z=114 isotopi...The center of the stability island of super-heavy nuclei(SHN)is the subject of intense experimental and theoretical investigations and has potential technological applications.^(298)^(114) Fl lies in the Z=114 isotopic chain as a persuasive candidate of the spherical double-magic nucleus in SHN,and in this study,the calculations of nuclear binding energies,one-nucleon and two-nucleon separation energies,a-decay energies,and the corresponding halflives provide strong evidence for this point.These calculations within an improved Weizsacker-Skyrme nuclear mass model(WS*)were performed and compared with the calculations of the finite-range droplet model(FRDM2012)and experimental data for Z=114 isotopes and N=184 isotones.Concurrently,the corresponding single-particle levels in a Woods-Saxon potential well with a spin-orbit term are calculated,which can be used as a powerful indicator to identify the shell effects existing in114298Fl.Both the study of the properties of the isotopic chain and microphysical quantities provide a vital signal that ^(298)^(114) Fl is a spherical double-magic nucleus and also the center of the SHN.展开更多
The total length of the second stage of the water supply project in the northern areas of the Xinjiang Uygur Autonomous Region is 540 km, of which the total length of the tunnels is 516 km. The total tun- neling milea...The total length of the second stage of the water supply project in the northern areas of the Xinjiang Uygur Autonomous Region is 540 km, of which the total length of the tunnels is 516 km. The total tun- neling mileage is 569 km, which includes 49 slow-inclined shafts and vertical shafts. Among the tunnels constructed in the project, the Ka-Shuang tunnel, which is a single tunnel with a length of 283 kin, is cur- rently the longest water-conveyance tunnel in the world. The main tunnel of the Ka-Shuang tunnel is divided into 18 tunnel-boring machine (TBM) sections, and 34 drilling-and-blasting sections, with 91 tunnel faces. The construction of the Ka-Shuang tunnel has been regarded as an unprecedented challenge for project construction management, risk control, and safe and efficient construction; it has also pre- sented higher requirements for the design, manufacture, operation, and maintenance of the TBMs and their supporting equipment. Based on the engineering characteristics and adverse geological conditions, it is necessary to analyze the major problems confronted by the construction and systematically locate disaster sources. In addition, the risk level should be reasonably ranked, responsibility should be clearly identified, and a hierarchical-control mechanism should be established. Several techniques are put for- ward in this paper to achieve the objectives mentioned above; these include advanced geological prospecting techniques, intelligent tunneling techniques combined with the sensing and fusion of infor- mation about rock parameters and mechanical parameters, monitoring and early-warning techniques, and modern information technologies. The application of these techniques offers scientific guidance for risk control and puts forward technical ideas about improving the efficiency of safe tunneling. These techniques and ideas have great significance for the development of modern tunneling technolo- gies and research into major construction equipment.展开更多
Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation ...Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord Gi statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.展开更多
This paper analyses perturbations of Noether symmetry, Lie symmetry, and form invariance for super-long elastic slender rod systems. Criterion and structure equations of the symmetries after disturbance are proposed. ...This paper analyses perturbations of Noether symmetry, Lie symmetry, and form invariance for super-long elastic slender rod systems. Criterion and structure equations of the symmetries after disturbance are proposed. Considering perturbation of all infinitesimal generators, three types of adiabatic invariants induced by perturbation of symmetries for the system are obtained.展开更多
Electrochemical cyclic voltammetric(CV) scan was applied to inducing the partial oxidation and defects of carbon nanotubes(CNTs).The electrochemically induced functional groups and physical defects were demonstrat...Electrochemical cyclic voltammetric(CV) scan was applied to inducing the partial oxidation and defects of carbon nanotubes(CNTs).The electrochemically induced functional groups and physical defects were demonstrated to show positive effects on the nanotube capacitance,as exemplified by super-long CNT arrays as model for the easy fabrication of CNT electrodes.Specifically,the initial hydrophobic nanotube surface becomes hydrophilic and a ten-time enhancement in capacitance is observed with respect to the pristine CNT sample.Thus,the electrochemical CV pretreatment can be used as an effective approach to activate the CNT surface for an enhanced electrochemical performance in capacitors,and many other advanced devices beyond capacitors,such as electrochemical sensors and batteries.展开更多
DNA is a nucleic acid molecule with double-helical structures that are special symmetrical structures attracting great attention of numerous researchers. The super-long elastic slender rod, an important structural mod...DNA is a nucleic acid molecule with double-helical structures that are special symmetrical structures attracting great attention of numerous researchers. The super-long elastic slender rod, an important structural model of DNA and other long-train molecules, is a useful tool in analysing the symmetrical properties and the stabilities of DNA. This paper studies the structural properties of a super-long elastic slender rod as a structural model of DNA by using Kirchhoff's analogue technique and presents the Noether symmetries of the model by using the method of infinitesimal transformation. Baaed on Kirchhoff's analogue it analyses the generalized Hamilton canonical equations. The infinitesimal transfornaationa with rcspect to the radial coordinnte, the gonarnlizod coordinates, and the Cluasi-momenta of 5he model are introduced. The Noether gymmetries and conserved qugntities of the model are obtained.展开更多
Based on the capacity/demand(C/D)analysis of bridge components,and life cycle and performance based seismic design principles,a practical approach is developed for the seismic performance evaluation of super-long span...Based on the capacity/demand(C/D)analysis of bridge components,and life cycle and performance based seismic design principles,a practical approach is developed for the seismic performance evaluation of super-long span cable-stayed bridges.According to the approach,the seismic performance evaluation of the Sutong Bridge,which is a cable-stayed bridge with a main span of 1 088 m,is completed,and the practicality of the approach is validated.The earthquake resistance level for super-long span cable-stayed bridges is discussed,including the earthquake level,its corresponding structural performance and check indices.And a set of formula for capacity/demand ratio calculation of bridge components is proposed.展开更多
In order to understand the migration law of respirable dust and gain reasonable design parameters for dust control on a super-long double-shearer fully mechanized working face, this paper describes research carried ou...In order to understand the migration law of respirable dust and gain reasonable design parameters for dust control on a super-long double-shearer fully mechanized working face, this paper describes research carried out using a numerical simulation package(Fluent) based on gas-solid coupling dispersed multiphase flow model and field measurement to research different technology modes, dust distribution law at different intervals where shearers work in opposite directions on the lower 9303 face, No. 2 Jining Mine,Yankuang Coal Mining Co. Results show that the concentration of dust 3–6 m away from the shearers working in the same directions was large, while the impact area of respirable dust near the shearer increased significantly to 5–6 m with the distance between two shearers working in opposite directions.The concentration of dust on a double-shearer face was considerably higher than that of a face with one shear under the combined effect of wind speed on the face and disturbed wind around the shearer, while the dust concentration near the shearer on the return side was considerably higher than that on the inlet side. The concentration of dust on a double-shearer face along the airflow declined slowly so that dust was hard to control. Simulation results confirmed the results of field measurement, which could provide reference for dust prevention design.展开更多
The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World ...The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World Stress Map and the Crustal Stress of China, and previous research findings can offer prediction of stress orientations in an engineering area. At the same time, the Andersonian theory can be used to analyze the possible stress orientation of a region. With limited in-situ stress measurements, the Hock-Brown Criterion can be used to estimate the strength of rock mass in an area of interest by utilizing the geotechnical investigation data, and the modified Sheorey's model can subsequently be employed to predict the areas' stress profile, without stress data, by taking the existing in-situ stress measurements as input parameters. In this paper, a case study was used to demonstrate the application of this systematic solution. The planned Kohala hydropower plant is located on the western edge of Qinghai-Tibet Plateau. Three hydro-fracturing stress measurement campaigns indicated that the stress state of the area is SH - Sh 〉 Sv or SH 〉Sv 〉 Sh. The measured orientation of Sn is NEE (N70.3°-89°E), and the regional orientation of SH from WSM is NE, which implies that the stress orientation of shallow crust may be affected by landforms. The modified Sheorey model was utilized to predict the stress profile along the water sewage tunnel for the plant. Prediction results show that the maximum and minimum horizontal principal stres- ses of the points with the greatest burial depth were up to 56.70 and 40.14 MPa, respectively, and the stresses of areas with a burial depth of greater than 500 m were higher. Based on the predicted stress data, large deformations of the rock mass surrounding water conveyance tunnels were analyzed. Results showed that the large deformations will occur when the burial depth exceeds 300 m. When the burial depth is beyond 800 m, serious squeezing deformations will occur in the surrounding rock masses, thus requiring more attention in the design and construction. Based on the application efficiency in this case study, this prediction method proposed in this paper functions accurately.展开更多
文摘Changqing Yellow River Super-long Bridge of Zhengzhou-Ji'nan HSR is a partial cable-stayed bridge with concrete main girder and a unit length of 1,080 m.Studies are carried out on the key technologies of bridge design,and the main conclusions are as follows:The whole unit adopts the supporting system of tower pier consolidation and tower-beam separation,and each pier is provided with seismic mitigation and isolation bearing;shaped-steel reinforced concrete bridge tower is adopted to bring into full play the tensile performance of steel and the compressive performance of concrete,and avoid the construction challenges of setting up multi-layer and multi-stirrup reinforcement while improving the bearing capacity of section;a new type of double-side and bi-directional anti-skid anchorage device is adopted for the cable saddle of wire divider pipe in order to withstand the unbalanced cable force,and verify the reliability of the anti-skid anchorage device by solid model test;and large-segment cantilever pouring design is adopted for the main girder with a maximum segment length of 8 m to effectively shorten the construction period of the bridge.
基金The Natural Science Foundation of Hubei Province(No.2007ABA094)
文摘A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypical materials are simulated using different indicators in the centrifuge model.The silver sand,the shaft and the pile cap are simulated according to the natural density,the compressive stiffness and the bending stiffness,respectively.The finite element method(FEM)is implemented and analyzed in ANSYS,in which the stress field during the undisturbed soil stage,the boring stage,the concrete-casting stage and the curing stage are discussed in detail.Comparisons in terms of load-settlement,shaft axial force distribution and lateral friction between the numerical results and the test data are carried out to investigate the bearing behaviors of super-long rock-socketed bored pile groups under loading and unloading conditions.Results show that there is a good agreement between the centrifuge modeling tests and the FEM.In addition,the load distribution at the pile top is complicated,which is related to the stiffness of the cap,the corresponding assumptions and the analysis method.The shaft axial force first increases slightly with depth then decreases sharply,and the rate of decrease in rock is greater than that in sand and soil.
基金financially supported by the National Natural Science Foundation of China(Nos.21872045 and 21975069)the Key Project of Research and Development Plan of Hunan Province(Grant 2019SK2071)+1 种基金the Natural Science Foundation of Hunan Province(2020JJ4169)support from the Development and Reform Commission of Hunan Province.
文摘Studies have found that oxygen-rich-containing functional groups in carbon-based materials can be used as active sites for the storage performance of K^(+),but the basic storage mechanism is still unclear.Herein,we construct and optimize 3D honeycomb-like carbon grafted with plentiful COOH/C=O functional groups(OFGC)as anodes for potassium ion batteries.The OFGC electrode with steady structure and rich functional groups can effectively contribute to the capacity enhancement and the formation of stable solid electrolyte interphase(SEI)film,achieving a high reversible capacity of 230 mAh g^(-1) at 3000 mA g^(-1) after 10,000 cycles(almost no capacity decay)and an ultra-long cycle time over 18 months at 100 mA g^(-1).The study results revealed the reversible storage mechanism between K^(+)and COOH/C=O functional groups by forming C-O-K compounds.Meanwhile,the in situ electrochemical impedance spectroscopy proved the highly reversible and rapid de/intercalation kinetics of K+in the OFGC electrode,and the growth process of SEI films.In particular,the full cells assembled by Prussian blue cathode exhibit a high energy density of 113 Wh kg^(-1) after 800 cycles(calculated by the total mass of anode and cathode),and get the light-emitting diodes lamp and ear thermometer running.
基金supported by the National Natural Science Foundation of China (No. 20576075 and 21206194)
文摘Liaohe super-heavy crude oil was separated into its components, namely saturates, aromatics, resins, and asphaltenes (SARA), by the group separation method. Several solvents were used to extract different forms of metallic elements from crude oil. The metallic elements, such as calcium, nickel, iron and manganese, in crude oil, SARA and extract samples were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results demonstrate that the contents of calcium, nickel, iron, and manganese gradually increase in saturates, aromatics, resins, and asphaltenes, suggesting that the abundance of the four metallic elements in asphaltenes is much higher than that in the other groups. For example, the content of calcium in asphaltenes reaches a maximum of 7,920 pg/g. Among the SARA components of Liaohe super-heavy crude oil, resins account for more than 50 wt%, suggesting that the total amount of the four metallic elements are higher in the resin component than in other components. The four metallic elements mainly exist in the form of organic metallic compounds in crude oil. Further analysis shows that calcium and manganese elements exist mainly as metal salts of petroleum acids, and the majority of the iron and all the nickel exist mainly as metalloporphyrin and non-metalloporphyrin compounds.
基金the National Natural Science Foundation of China (Grant No. 20576075)
文摘In this study, petroleum acids were extracted from the super-heavy oil of Liaohe oilfield, North-east China, by using acetic acid, and their structural components and properties were investigated by using FT-IR and MS. Moreover, the trace metal contents in the super-heavy oil sample before and after acetic acid treatment were also measured in this work. The results showed that naphthenic acids were the main component of petroleum acids in Liaohe super-heavy oil, and the content of naphthenic acids with double rings was higher than that of other naphthenic acids. It can be concluded that petroleum acids in Liaohe super-heavy oil mainly consist of naphthenic acids, with a carbon number of around 11–69 and containing one to six naphthenic rings and/or one to two aromatic rings, and mainly exists in form of metal salts of petroleum acid. The molecular weight of petroleum acids is in the range of 190–1000.
基金Project(50908084)supported by the National Natural Science Foundation of ChinaProject(200815)supported by the Transportation Science and Technology Program of Hunan Province,ChinaProject(531107040620)supported by the Growth Plan for Young Teachers of Hunan University,China
文摘In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.
基金supported by European Research Council(HiNaPc:737616)European Research Council(ThreeDsurface:240144)+8 种基金BMBF(ZIK-3DNanoDevice:03Z1MN11)DFG(LE2249_4-1)BMBF(Meta-ZIK-BioLithoMorphie:03Z1M511)National Natural Science Foundation of China(Nos.21577086,51702130,21503209)Natural Science Foundation of Jiangsu Province(BK 20170550)Jiangsu Specially-Appointed Professor ProgramHundred-Talent Program(Chinese Academy of Sciences)Beijing Natural Science Foundation(No.2162042)Key Research Program of Frontier Science,CAS(No.QYZDBSSW-SLH006)
文摘Nanowire(NW) structures is an alternative candidate for constructing the next generation photoelectrochemical water splitting system, due to the outstanding optical and electrical properties. NW photoelectrodes comparing to traditional semiconductor photoelectrodes shows the comparatively shorter transfer distance of photo-induced carriers and the increase amount of the surface reaction sites, which is beneficial for lowering the recombination probability of charge carriers and improving their photoelectrochemical(PEC) performances. Here, we demonstrate for the first time that super-long Cu_2O NWs, more than 4.5 μm,with highly efficient water splitting performance, were synthesized using a cost-effective anodic alumina oxide(AAO) template method. In comparison with the photocathode with planar Cu_2O films, the photocathode with Cu_2O NWs demonstrates a significant enhancement in photocurrent, from –1.00 to –2.75 mA/cm^2 at –0.8 V versus Ag/AgCl. After optimization of the photoelectrochemical electrode through depositing Pt NPs with atomic layer deposition(ALD) technology on the Cu_2O NWs, the plateau of photocurrent has been enlarged to –7 mA/cm^2 with the external quantum yield up to 34% at 410 nm. This study suggests that the photoelectrode based on Cu_2O NWs is a hopeful system for establishing high-efficiency water splitting system under visible light.
基金financially supported by the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant Nos.CUGGC09 and CUG200637)Opening Fund of Key Laboratory of Unconventional Oil&Gas Development(China University of Petroleum(East China)),Ministry of Education(Grant No.19CX05005A-201)the Sinopec Science and Technology Department(Grant Nos.P2006 and 33550000-21-ZC0611-0006)。
文摘Super-heavy oil is a significant unconventional energy source,and more than 30 years of research have shown that steam-assisted gravity drainage(SAGD)technology is suitable for thick super-heavy oil reservoirs.Recently,more and more thin-layer super-heavy oil reservoirs have been discovered in China,while their deep buried depth and serous heterogeneity make the existing SAGD technology difficult to apply,so it is urgent to improve the existing SAGD technology for the thin-layer super-heavy oil.To this end,this paper focuses on the enlightenment of field application in SAGD technology.Firstly,based on typical SAGD field projects,the development history of SAGD technology in the world was reviewed,and the influence of reservoir physical properties on the application of SAGD technology in thin-layer superheavy oil reservoirs was analyzed.Secondly,the well pattern,wellbore structure,pre-heating,artificial lift,and monitor technique of SAGD were detailed described,and their adjustment direction was expounded for the development of thin-layer super-heavy oil reservoirs.Lastly,the gas-and solventassistant SAGD were comprehensively evaluated,and their application potential in thin-layer superheavy oil reservoirs was studied.The research results can provide theoretical guidance for the application of SAGD technology in thin-layer super-heavy oil reservoirs.
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.
基金supported by the National Natural Science Foundation of China(Nos.10775061,11175054,11675066,11665019,and11947229)the China Postdoctoral Science Foundation(No.2019M663853)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2017-ot04 and lzujbky-2020-it01)Feitian Scholar Project of Gansu Province。
文摘The center of the stability island of super-heavy nuclei(SHN)is the subject of intense experimental and theoretical investigations and has potential technological applications.^(298)^(114) Fl lies in the Z=114 isotopic chain as a persuasive candidate of the spherical double-magic nucleus in SHN,and in this study,the calculations of nuclear binding energies,one-nucleon and two-nucleon separation energies,a-decay energies,and the corresponding halflives provide strong evidence for this point.These calculations within an improved Weizsacker-Skyrme nuclear mass model(WS*)were performed and compared with the calculations of the finite-range droplet model(FRDM2012)and experimental data for Z=114 isotopes and N=184 isotones.Concurrently,the corresponding single-particle levels in a Woods-Saxon potential well with a spin-orbit term are calculated,which can be used as a powerful indicator to identify the shell effects existing in114298Fl.Both the study of the properties of the isotopic chain and microphysical quantities provide a vital signal that ^(298)^(114) Fl is a spherical double-magic nucleus and also the center of the SHN.
文摘The total length of the second stage of the water supply project in the northern areas of the Xinjiang Uygur Autonomous Region is 540 km, of which the total length of the tunnels is 516 km. The total tun- neling mileage is 569 km, which includes 49 slow-inclined shafts and vertical shafts. Among the tunnels constructed in the project, the Ka-Shuang tunnel, which is a single tunnel with a length of 283 kin, is cur- rently the longest water-conveyance tunnel in the world. The main tunnel of the Ka-Shuang tunnel is divided into 18 tunnel-boring machine (TBM) sections, and 34 drilling-and-blasting sections, with 91 tunnel faces. The construction of the Ka-Shuang tunnel has been regarded as an unprecedented challenge for project construction management, risk control, and safe and efficient construction; it has also pre- sented higher requirements for the design, manufacture, operation, and maintenance of the TBMs and their supporting equipment. Based on the engineering characteristics and adverse geological conditions, it is necessary to analyze the major problems confronted by the construction and systematically locate disaster sources. In addition, the risk level should be reasonably ranked, responsibility should be clearly identified, and a hierarchical-control mechanism should be established. Several techniques are put for- ward in this paper to achieve the objectives mentioned above; these include advanced geological prospecting techniques, intelligent tunneling techniques combined with the sensing and fusion of infor- mation about rock parameters and mechanical parameters, monitoring and early-warning techniques, and modern information technologies. The application of these techniques offers scientific guidance for risk control and puts forward technical ideas about improving the efficiency of safe tunneling. These techniques and ideas have great significance for the development of modern tunneling technolo- gies and research into major construction equipment.
文摘Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord Gi statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.
基金Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2009AQ011)Science Foundation of Binzhou University,China (Grant No. BZXYG0903)
文摘This paper analyses perturbations of Noether symmetry, Lie symmetry, and form invariance for super-long elastic slender rod systems. Criterion and structure equations of the symmetries after disturbance are proposed. Considering perturbation of all infinitesimal generators, three types of adiabatic invariants induced by perturbation of symmetries for the system are obtained.
基金Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China(No.20100732002)the National Natural Science Foundation of China(No.21004006)+2 种基金the Research Foundation for the Doctoral Program of Higher Education of China(No.20101101120036)the 111 Project in China(No.B07012)the Program for the New Century Excellent Talents in Universities of China(No.NCET-10-0047)
文摘Electrochemical cyclic voltammetric(CV) scan was applied to inducing the partial oxidation and defects of carbon nanotubes(CNTs).The electrochemically induced functional groups and physical defects were demonstrated to show positive effects on the nanotube capacitance,as exemplified by super-long CNT arrays as model for the easy fabrication of CNT electrodes.Specifically,the initial hydrophobic nanotube surface becomes hydrophilic and a ten-time enhancement in capacitance is observed with respect to the pristine CNT sample.Thus,the electrochemical CV pretreatment can be used as an effective approach to activate the CNT surface for an enhanced electrochemical performance in capacitors,and many other advanced devices beyond capacitors,such as electrochemical sensors and batteries.
基金supported by the National Natural Science Foundation of China (Grant Nos 10672143 and 60575055)the State Key Laboratory of Scientific and Engineering ComputingChinese Academy of Sciences and the Natural Science Foundation of Henan Province Government of China (Grant No 0511022200)
文摘DNA is a nucleic acid molecule with double-helical structures that are special symmetrical structures attracting great attention of numerous researchers. The super-long elastic slender rod, an important structural model of DNA and other long-train molecules, is a useful tool in analysing the symmetrical properties and the stabilities of DNA. This paper studies the structural properties of a super-long elastic slender rod as a structural model of DNA by using Kirchhoff's analogue technique and presents the Noether symmetries of the model by using the method of infinitesimal transformation. Baaed on Kirchhoff's analogue it analyses the generalized Hamilton canonical equations. The infinitesimal transfornaationa with rcspect to the radial coordinnte, the gonarnlizod coordinates, and the Cluasi-momenta of 5he model are introduced. The Noether gymmetries and conserved qugntities of the model are obtained.
基金National Key Technologies R&D Program(No.2006BAG04B01),research on technical standards,key structures and their characteristics of kilometer-magnitude cable-stayed bridges
文摘Based on the capacity/demand(C/D)analysis of bridge components,and life cycle and performance based seismic design principles,a practical approach is developed for the seismic performance evaluation of super-long span cable-stayed bridges.According to the approach,the seismic performance evaluation of the Sutong Bridge,which is a cable-stayed bridge with a main span of 1 088 m,is completed,and the practicality of the approach is validated.The earthquake resistance level for super-long span cable-stayed bridges is discussed,including the earthquake level,its corresponding structural performance and check indices.And a set of formula for capacity/demand ratio calculation of bridge components is proposed.
基金the National Natural Science Foundation of China (No.51404249)the Basic Research Program of Jiangsu Province (No.BK20140201)the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support provided during this research
文摘In order to understand the migration law of respirable dust and gain reasonable design parameters for dust control on a super-long double-shearer fully mechanized working face, this paper describes research carried out using a numerical simulation package(Fluent) based on gas-solid coupling dispersed multiphase flow model and field measurement to research different technology modes, dust distribution law at different intervals where shearers work in opposite directions on the lower 9303 face, No. 2 Jining Mine,Yankuang Coal Mining Co. Results show that the concentration of dust 3–6 m away from the shearers working in the same directions was large, while the impact area of respirable dust near the shearer increased significantly to 5–6 m with the distance between two shearers working in opposite directions.The concentration of dust on a double-shearer face was considerably higher than that of a face with one shear under the combined effect of wind speed on the face and disturbed wind around the shearer, while the dust concentration near the shearer on the return side was considerably higher than that on the inlet side. The concentration of dust on a double-shearer face along the airflow declined slowly so that dust was hard to control. Simulation results confirmed the results of field measurement, which could provide reference for dust prevention design.
基金provided by the National Natural Science Foundation of China – China (No. 41274100)the Fundamental Research Fund for State Level Scientific Institutes (No. ZDJ2012-20)
文摘The prediction of the stress field of deep-buried tunnels is a fundamental problem for scientists and engineers. In this study, the authors put forward a systematic solution for this problem. Databases from the World Stress Map and the Crustal Stress of China, and previous research findings can offer prediction of stress orientations in an engineering area. At the same time, the Andersonian theory can be used to analyze the possible stress orientation of a region. With limited in-situ stress measurements, the Hock-Brown Criterion can be used to estimate the strength of rock mass in an area of interest by utilizing the geotechnical investigation data, and the modified Sheorey's model can subsequently be employed to predict the areas' stress profile, without stress data, by taking the existing in-situ stress measurements as input parameters. In this paper, a case study was used to demonstrate the application of this systematic solution. The planned Kohala hydropower plant is located on the western edge of Qinghai-Tibet Plateau. Three hydro-fracturing stress measurement campaigns indicated that the stress state of the area is SH - Sh 〉 Sv or SH 〉Sv 〉 Sh. The measured orientation of Sn is NEE (N70.3°-89°E), and the regional orientation of SH from WSM is NE, which implies that the stress orientation of shallow crust may be affected by landforms. The modified Sheorey model was utilized to predict the stress profile along the water sewage tunnel for the plant. Prediction results show that the maximum and minimum horizontal principal stres- ses of the points with the greatest burial depth were up to 56.70 and 40.14 MPa, respectively, and the stresses of areas with a burial depth of greater than 500 m were higher. Based on the predicted stress data, large deformations of the rock mass surrounding water conveyance tunnels were analyzed. Results showed that the large deformations will occur when the burial depth exceeds 300 m. When the burial depth is beyond 800 m, serious squeezing deformations will occur in the surrounding rock masses, thus requiring more attention in the design and construction. Based on the application efficiency in this case study, this prediction method proposed in this paper functions accurately.