A wide-bore 5 T NbTi superconducting magnet, for magnetic separator, with an operational current of 106 A is designed and fabricated. This magnet with a Ф60 mm roomtemperature bore is installed in a vacuum cryostat a...A wide-bore 5 T NbTi superconducting magnet, for magnetic separator, with an operational current of 106 A is designed and fabricated. This magnet with a Ф60 mm roomtemperature bore is installed in a vacuum cryostat and immersed in liquid helium. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to maintain the cooling shield at 70 K and the condenser at 4 K in order to achieve the zero vaporization loss of liquid helium. The cooling power of the GM cryocooler is 1.5 W. In this paper, the design, heat leakage, stress analysis, quench protection characteristics and preliminary test results are presented.展开更多
A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconductin...A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconducting solenoids (Nb-Ti/Cu) and six superconducting sextupoles (Nb-Ti/Cu). Different from the conventional supercon- ducting ECR magnetic structure, the SEC17AL Ⅱ includes three superconducting solenoid coils' that are located inside the superconducting sextupoles. The SECRAL Ⅱ can significantly reduce the interaction forces between the sextupole and the solenoids, and the magnets can also be more compact in size. For this multi-component SECRAL Ⅱ generating its self field of -8 T and being often exposed to the high self field, the mechanical analysis has become the main issue to keep their stress at 〈200 MPa on coils. The analytical and experimental results in mechanics are presented in the SECRAL Ⅱ structure. To improve the accuracy and efficiency of analysis, according to the composite rule of micromechanics, the equivalent uniform windings are used to simulate the epoxy-impregnated Nb-Ti/Cu coils. In addition, using low temperature strain gauges and a wireless fast strain acquisition system, a fundamental experiment on the based on our analysis, the stresses and deformations optimized. strains developments of a sextupole is reported. Finally, for its assembly of each SECRAL Ⅱ coil will be further展开更多
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur...A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.展开更多
A large facility for testing superconducting magnets has been in operation at the Institute of Plasma Physics of the Chinese Academy of Sciences since the completion of its construction that began in 1999. A helium re...A large facility for testing superconducting magnets has been in operation at the Institute of Plasma Physics of the Chinese Academy of Sciences since the completion of its construction that began in 1999. A helium refrigerator is used to cool the magnets and liquefy helium which can provide 3.8 K-4.5 K, 1.8 bar-5 bar, 20g/s-40g/s supercritical helium for the coils or a 150 L/h liquefying helium capacity. Other major parts include a large vacuum vessel (3.5 m in diameter and 6.1 m in height) with a liquid nitrogen temperature shield, two pairs of current lead, three sets of 14.5 kA-50 kA power supply with a fast dump quench protection circuitry, a data acquisition and control system, a vacuum pumping system, and a gas tightness inspecting devise. The primary goal of the test facility is to test the EAST TF and PF magnets in relation to their electromagnetic, stability, thermal, hydraulic, and mechanical performance. The construction of this facility was completed in 2002, followed by a series of systematic coil testing. By now ten TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a model coil of the PF large coil have been successfully tested in the facility.展开更多
The mission of Korea Superconducting Tokamak Advanced Research (KSTAR)project is to develop an advanced steady-state superconducting tokamak for establishing a scientificand technological basis for an attractive fusio...The mission of Korea Superconducting Tokamak Advanced Research (KSTAR)project is to develop an advanced steady-state superconducting tokamak for establishing a scientificand technological basis for an attractive fusion reactor. Because one of the KSTAR mission is toachieve a steady-state operation, the use of superconducting coils is an obvious choice for themagnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into usein both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasmacenter and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement inKSTAR magnet-system development includes the development of CICC, the development of a full-size TFmodel coil, the development of a coil system for background magnetic-field generation , theconstruction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are inthe stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.展开更多
The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By ...The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By optimizing the homogeneity of Diameter Sphere Voltnne (DSV), the positions and currents of the seed coils will be obtained. Secondly, according to the positions and currents of the seed coils, the current density of superconducting wires is determined, and then the original sections for the coils can be achieved. An optimization for the homogeneity based on the constrained nonlincar optimization method is employed to determine the coils with good homogeneity. Thirdly, the magnetic field generated by previous coils is set as the background field, then add two coils with reverse current, and optimize the stray field line of 5 Gauss in a certain scope. Finally, a further optimization for the homogeneity is used to get Final coils. This method can also be used in the design of other axisynmaetfic superconducting MRI magnets.展开更多
A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A...A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a com- pressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribu- tion was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting tile magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved.展开更多
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient volt...A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.展开更多
A pool cooled experimental magnet based on the copper stabilized NbTi supercon- ducting wire was designed, fabricated and tested, in order to evaluate the engineering design of the dipole superconducting magnet for th...A pool cooled experimental magnet based on the copper stabilized NbTi supercon- ducting wire was designed, fabricated and tested, in order to evaluate the engineering design of the dipole superconducting magnet for the collector ring (CR) of the facility for antiproton and ion research (FAIR) project. In this paper, the experimental setup including quench protection system was presented. Performance of the liquid helium pool cooled test was introduced. All of the results indicate both the performance of conductor and the experimental superconducting magnet under low temperature is stable, which suggests the engineering design are feasible for the formal magnet in CR of the FAIR project.展开更多
On the basis of the published literature and the interviews with some participants,this paper introduces the early history of the studies of superconductive materials and superconducting magnet during 1962~ 1966 in C...On the basis of the published literature and the interviews with some participants,this paper introduces the early history of the studies of superconductive materials and superconducting magnet during 1962~ 1966 in China,narrates the achievements of other relevant experimental and theoretical studies of superconductivity in that period briefly,and tries to give the authors' comments on that history.展开更多
Aconduction-cooled superconducting magnet with central field of 10Tand warmbore of 100 mmwas designed based on a Nb3Sn and two NbTi superconducting coils.At the first stage,the NbTi coils havebeen fabricated andtested...Aconduction-cooled superconducting magnet with central field of 10Tand warmbore of 100 mmwas designed based on a Nb3Sn and two NbTi superconducting coils.At the first stage,the NbTi coils havebeen fabricated andtested.Atwo-stage 4 KGifford-McMahon(GM) cryocooler withthe second-stage powerin1W,4.2Kis used to cool the magnet fromroomtemperature to 4 K.The superconducting magnet with thesame power supply has the operating current of 116A.The magnet can be rotated with a support frame to beoperated with either horizontal or vertical position.Apair of Bi-2223 hightemperature superconductingcurrentleads was employedto reduce heat leakage into 4.2Klevel.The NbTi coils reachto the operating current of120Awithout training effect to be observed duringchargingof the magnet during40 minutes chargingtime andgenerate the center field of 6.5T.The training effect inthe NbTi magnet directly cool-down by cryocooler andinter-winding support structure in magnet can be remarkablyimproved.The superconducting magnet has beenstably operatedfor more than 275 hours with 6.5T.In this paper,the detailed design,fabrication,stressanalysis and quench protection characteristics are presented.展开更多
In order to carry on ECRH experiments and research on HL-2A tokamak, two sets of 4 mm gyrotrons were imported from GYCOM. Each of them has a superconducting magnet system to offer a required magnetic field configurati...In order to carry on ECRH experiments and research on HL-2A tokamak, two sets of 4 mm gyrotrons were imported from GYCOM. Each of them has a superconducting magnet system to offer a required magnetic field configuration. In gyrotron, a strong magnetic field is necessary for electron beam to satisfy the electron cyclotron resonance condition and to excite one the eigemodes in the cavity. Its functions are: (I) to make electrons gyrate, ( 2 ) to offer enough adiabatic compression value to make electrons acquire strong transverse energy. During the period of adjustment, magnetic field distribution was measured. Meanwhile, operating current of superconducting magnet and operating frequency of gyrotron were determined.展开更多
For a superconducting magnet of magnetic resonance imaging (MRI), the novel approach presented in this paper allows the design of cylindrical gradient and shim coils of finite length. The method is based on identifi...For a superconducting magnet of magnetic resonance imaging (MRI), the novel approach presented in this paper allows the design of cylindrical gradient and shim coils of finite length. The method is based on identification of the weighting of harmonic components in the current distribution that will generate a magnetic field whose z-component follows a chosen spherical harmonic function. Mathematical expressions which relate the harmonic terms in the cylin- drical current distribution to spherical harmonic terms in the field expansion are established. Thus a simple matrix inversion approach can be used to design a shim coil of any order pure harmonic. The expressions providing a spherical harmonic decomposition of the field components produced by a particular cylindrical current distribution are novel. A stream function was applied to obtain the discrete wire distribution on the cylindrical-surface. This method does not require the setting of the target-field points. The discussion referring to matrix equations in terms of condition numbers proves that this novel approach has no ill-conditioned problems. The results also indicate that it can be used to design cylindrical-surface shim coils of finite length that will generate a field variation which follows a particular spherical harmonic over a reasonably large-sized volume.展开更多
Screening current is recognized as one of the critical elements limiting the progression of superconducting magnets toward achieving higher magnetic fields. Currently, most non-insulated(NI) superconducting magnets co...Screening current is recognized as one of the critical elements limiting the progression of superconducting magnets toward achieving higher magnetic fields. Currently, most non-insulated(NI) superconducting magnets consider the magnet as insulated when addressing the issue of screening current. However, the bypass current in the NI magnet can modify the actual history of magnetization, so the screening current in NI magnet will be different from that in the insulated magnet. This paper presents a novel method based on the homogenized T-A formulation(T is the current vector potential, and A is the magnetic vector potential), which enables real-time simulation of both the bypass current behavior and the implications of screening current in NI superconducting magnets, even when these magnets contain tens of thousands of turns. We have developed a 32 T NI hybrid superconducting magnet and validated the effectiveness of this method through experiments. Employing this efficacious method,we conducted a comprehensive calculation of screening current in NI magnets, comparing them with insulated magnets in terms of screening current-induced stress(SCIS), screening current-induced field(SCIF), and losses. The results indicate that in the NI insert coils, the sequential excitation of background coils and insert coils induces a reverse screening current, resulting in slightly lower SCIF and SCIS compared to those in the insulated magnets. The method and results can contribute to the enhancement of magnet design and provide valuable insights for the development of ultra-high fields(UHF) NI magnets.展开更多
Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufact...Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.展开更多
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app...Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.展开更多
The CR superconducting magnet is a dipole of the FAIR project of GSI in Germany.The quench of the strand is simulated using FEM software ANSYS.From the simulation,the quench propagation can be visualized. Programming ...The CR superconducting magnet is a dipole of the FAIR project of GSI in Germany.The quench of the strand is simulated using FEM software ANSYS.From the simulation,the quench propagation can be visualized. Programming with APDL,the value of propagation velocity of normal zone is calculated.Also the voltage increasing over time of the strand is computed and pictured.Furthermore,the Minimum Propagation Zone(MPZ)is studied. At last,the relation between the current and the propagation velocity of normal zone,and the influence of initial temperature on quench propagation are studied.展开更多
The fast-response feature from a superconducting magnetic energy storage(SMES)device is favored for suppressing instantaneous voltage and power fluctuations,but the SMES coil is much more expensive than a conventional...The fast-response feature from a superconducting magnetic energy storage(SMES)device is favored for suppressing instantaneous voltage and power fluctuations,but the SMES coil is much more expensive than a conventional battery energy storage device.In order to improve the energy utilization rate and reduce the energy storage cost under multiple-line power distribution conditions,this paper investigates a new interline DC dynamic voltage restorer(IDC-DVR)scheme with one SMES coil shared among multiple compensating circuits.In this new concept,an improved current-voltage(I/V)chopper assembly,which has a series of input/output power ports,is introduced to connect the single SMES coil with multiple power lines,and thereby satisfy the independent energy exchange requirements of any line to be compensated.Specifically,if two or more power lines have simultaneous compensating demands,the SMES coil can be selectively controlled to compensate the preferable line according to the priority order of the line.The feasibility of the proposed scheme is technically verified to maintain the transient voltage stability in multiple-line voltage swell and sag cases caused by either output voltage fluctuations from external power sources or power demand fluctuations from local sensitive loads.The simulation results provide a technical basis to develop a cost-effective SMES-based IDC-DVR for use in various DC distribution networks.展开更多
The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supp...The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm.展开更多
Unpredictable power fluctuation and fault ridethrough capability attract increased attention as two uncertain major factors in doubly-fed induction generators(DFIGs)integrated DC power system.Present solutions usually...Unpredictable power fluctuation and fault ridethrough capability attract increased attention as two uncertain major factors in doubly-fed induction generators(DFIGs)integrated DC power system.Present solutions usually require complicated cooperation comprising multiple modules of energy storage,current control,and voltage stabilizer.To overcome the drawbacks of existing solutions,this paper proposes a superconducting magnetic energy storage(SMES)integrated currentsource DC/DC converter(CSDC).It is mainly composed of a current-source back-to-back converter,and the SMES is tactfully embedded in series with the intermediate DC link.The proposed SMES-CSDC is installed in front of the DC-DFIG to carry out its dual abilities of load voltage stabilization under multifarious transient disturbances and power regulation under wind speed variations.Compared with the existing DC protection devices,the SMES-CSDC is designed on the basis of unique current-type energy storage.It has the advantages of fast response,extensive compensation range,concise hardware structure,and straightforward control strategy.The feasibility of the SMESCSDC is implemented via a scaled-down experiment,and its effectiveness for DC-DFIG protection is verified by a large-scale DC power system simulation.展开更多
文摘A wide-bore 5 T NbTi superconducting magnet, for magnetic separator, with an operational current of 106 A is designed and fabricated. This magnet with a Ф60 mm roomtemperature bore is installed in a vacuum cryostat and immersed in liquid helium. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to maintain the cooling shield at 70 K and the condenser at 4 K in order to achieve the zero vaporization loss of liquid helium. The cooling power of the GM cryocooler is 1.5 W. In this paper, the design, heat leakage, stress analysis, quench protection characteristics and preliminary test results are presented.
基金Supported by the National Natural Science Foundation of China under Grant No 11302225the China Postdoctoral Science Foundation under Grant Nos 2014M560820 and 2015T81071
文摘A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconducting solenoids (Nb-Ti/Cu) and six superconducting sextupoles (Nb-Ti/Cu). Different from the conventional supercon- ducting ECR magnetic structure, the SEC17AL Ⅱ includes three superconducting solenoid coils' that are located inside the superconducting sextupoles. The SECRAL Ⅱ can significantly reduce the interaction forces between the sextupole and the solenoids, and the magnets can also be more compact in size. For this multi-component SECRAL Ⅱ generating its self field of -8 T and being often exposed to the high self field, the mechanical analysis has become the main issue to keep their stress at 〈200 MPa on coils. The analytical and experimental results in mechanics are presented in the SECRAL Ⅱ structure. To improve the accuracy and efficiency of analysis, according to the composite rule of micromechanics, the equivalent uniform windings are used to simulate the epoxy-impregnated Nb-Ti/Cu coils. In addition, using low temperature strain gauges and a wireless fast strain acquisition system, a fundamental experiment on the based on our analysis, the stresses and deformations optimized. strains developments of a sextupole is reported. Finally, for its assembly of each SECRAL Ⅱ coil will be further
基金the National Natural Science Foundation of China(Nos.11932008 and 11672120)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-kb01)。
文摘A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.
基金The project supported by the National Meg-science Engineering Project of the Chinese Government
文摘A large facility for testing superconducting magnets has been in operation at the Institute of Plasma Physics of the Chinese Academy of Sciences since the completion of its construction that began in 1999. A helium refrigerator is used to cool the magnets and liquefy helium which can provide 3.8 K-4.5 K, 1.8 bar-5 bar, 20g/s-40g/s supercritical helium for the coils or a 150 L/h liquefying helium capacity. Other major parts include a large vacuum vessel (3.5 m in diameter and 6.1 m in height) with a liquid nitrogen temperature shield, two pairs of current lead, three sets of 14.5 kA-50 kA power supply with a fast dump quench protection circuitry, a data acquisition and control system, a vacuum pumping system, and a gas tightness inspecting devise. The primary goal of the test facility is to test the EAST TF and PF magnets in relation to their electromagnetic, stability, thermal, hydraulic, and mechanical performance. The construction of this facility was completed in 2002, followed by a series of systematic coil testing. By now ten TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a model coil of the PF large coil have been successfully tested in the facility.
基金The project supported by the Korea Ministry of Science and Technology under the KSTAR Project
文摘The mission of Korea Superconducting Tokamak Advanced Research (KSTAR)project is to develop an advanced steady-state superconducting tokamak for establishing a scientificand technological basis for an attractive fusion reactor. Because one of the KSTAR mission is toachieve a steady-state operation, the use of superconducting coils is an obvious choice for themagnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into usein both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasmacenter and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement inKSTAR magnet-system development includes the development of CICC, the development of a full-size TFmodel coil, the development of a coil system for background magnetic-field generation , theconstruction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are inthe stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.
基金supported by the National Natural Science Foundation of China(No.50577063)
文摘The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By optimizing the homogeneity of Diameter Sphere Voltnne (DSV), the positions and currents of the seed coils will be obtained. Secondly, according to the positions and currents of the seed coils, the current density of superconducting wires is determined, and then the original sections for the coils can be achieved. An optimization for the homogeneity based on the constrained nonlincar optimization method is employed to determine the coils with good homogeneity. Thirdly, the magnetic field generated by previous coils is set as the background field, then add two coils with reverse current, and optimize the stray field line of 5 Gauss in a certain scope. Finally, a further optimization for the homogeneity is used to get Final coils. This method can also be used in the design of other axisynmaetfic superconducting MRI magnets.
基金supported by the Intemational Thermonuclear Experimental Reactor Special Fund of China(No.2009GB102001)Cooperation on Key Technology of Plasma Heating in Tokamak(No.2010DFA63860)Critical Technology Research of Nuclear Fusion and Physical Experiments and on HL-2A Tokamak(No.H660003)
文摘A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a com- pressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribu- tion was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting tile magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved.
基金supported by the National Natural Science Foundation of China(Grant No.51307124)the Major Program of the National Natural Science Foundation of China(Grant No.51190105)
文摘A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.
基金supported by Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) (MOU GSI ACC 2005 01)
文摘A pool cooled experimental magnet based on the copper stabilized NbTi supercon- ducting wire was designed, fabricated and tested, in order to evaluate the engineering design of the dipole superconducting magnet for the collector ring (CR) of the facility for antiproton and ion research (FAIR) project. In this paper, the experimental setup including quench protection system was presented. Performance of the liquid helium pool cooled test was introduced. All of the results indicate both the performance of conductor and the experimental superconducting magnet under low temperature is stable, which suggests the engineering design are feasible for the formal magnet in CR of the FAIR project.
文摘On the basis of the published literature and the interviews with some participants,this paper introduces the early history of the studies of superconductive materials and superconducting magnet during 1962~ 1966 in China,narrates the achievements of other relevant experimental and theoretical studies of superconductivity in that period briefly,and tries to give the authors' comments on that history.
文摘Aconduction-cooled superconducting magnet with central field of 10Tand warmbore of 100 mmwas designed based on a Nb3Sn and two NbTi superconducting coils.At the first stage,the NbTi coils havebeen fabricated andtested.Atwo-stage 4 KGifford-McMahon(GM) cryocooler withthe second-stage powerin1W,4.2Kis used to cool the magnet fromroomtemperature to 4 K.The superconducting magnet with thesame power supply has the operating current of 116A.The magnet can be rotated with a support frame to beoperated with either horizontal or vertical position.Apair of Bi-2223 hightemperature superconductingcurrentleads was employedto reduce heat leakage into 4.2Klevel.The NbTi coils reachto the operating current of120Awithout training effect to be observed duringchargingof the magnet during40 minutes chargingtime andgenerate the center field of 6.5T.The training effect inthe NbTi magnet directly cool-down by cryocooler andinter-winding support structure in magnet can be remarkablyimproved.The superconducting magnet has beenstably operatedfor more than 275 hours with 6.5T.In this paper,the detailed design,fabrication,stressanalysis and quench protection characteristics are presented.
文摘In order to carry on ECRH experiments and research on HL-2A tokamak, two sets of 4 mm gyrotrons were imported from GYCOM. Each of them has a superconducting magnet system to offer a required magnetic field configuration. In gyrotron, a strong magnetic field is necessary for electron beam to satisfy the electron cyclotron resonance condition and to excite one the eigemodes in the cavity. Its functions are: (I) to make electrons gyrate, ( 2 ) to offer enough adiabatic compression value to make electrons acquire strong transverse energy. During the period of adjustment, magnetic field distribution was measured. Meanwhile, operating current of superconducting magnet and operating frequency of gyrotron were determined.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60871001)
文摘For a superconducting magnet of magnetic resonance imaging (MRI), the novel approach presented in this paper allows the design of cylindrical gradient and shim coils of finite length. The method is based on identification of the weighting of harmonic components in the current distribution that will generate a magnetic field whose z-component follows a chosen spherical harmonic function. Mathematical expressions which relate the harmonic terms in the cylin- drical current distribution to spherical harmonic terms in the field expansion are established. Thus a simple matrix inversion approach can be used to design a shim coil of any order pure harmonic. The expressions providing a spherical harmonic decomposition of the field components produced by a particular cylindrical current distribution are novel. A stream function was applied to obtain the discrete wire distribution on the cylindrical-surface. This method does not require the setting of the target-field points. The discussion referring to matrix equations in terms of condition numbers proves that this novel approach has no ill-conditioned problems. The results also indicate that it can be used to design cylindrical-surface shim coils of finite length that will generate a field variation which follows a particular spherical harmonic over a reasonably large-sized volume.
基金supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602800)the National Natural Science Foundation of China (Grant Nos. 52325701, 52293421, 52293422, and 52293423)the Synergetic Extreme Condition User Facility (SECUF) Project。
文摘Screening current is recognized as one of the critical elements limiting the progression of superconducting magnets toward achieving higher magnetic fields. Currently, most non-insulated(NI) superconducting magnets consider the magnet as insulated when addressing the issue of screening current. However, the bypass current in the NI magnet can modify the actual history of magnetization, so the screening current in NI magnet will be different from that in the insulated magnet. This paper presents a novel method based on the homogenized T-A formulation(T is the current vector potential, and A is the magnetic vector potential), which enables real-time simulation of both the bypass current behavior and the implications of screening current in NI superconducting magnets, even when these magnets contain tens of thousands of turns. We have developed a 32 T NI hybrid superconducting magnet and validated the effectiveness of this method through experiments. Employing this efficacious method,we conducted a comprehensive calculation of screening current in NI magnets, comparing them with insulated magnets in terms of screening current-induced stress(SCIS), screening current-induced field(SCIF), and losses. The results indicate that in the NI insert coils, the sequential excitation of background coils and insert coils induces a reverse screening current, resulting in slightly lower SCIF and SCIS compared to those in the insulated magnets. The method and results can contribute to the enhancement of magnet design and provide valuable insights for the development of ultra-high fields(UHF) NI magnets.
基金supported in part by the National Key Research and Development Program of China(No.2022YFA1603402)in part by the National Natural Science Foundation of China(No.11875272)。
文摘Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.
基金Project supported by the National Natural Science Foundation of China(Nos.11932008 and 12272156)the Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb06)+1 种基金the Gansu Science and Technology ProgramLanzhou City’s Scientific Research Funding Subsidy to Lanzhou University of China。
文摘Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.
文摘The CR superconducting magnet is a dipole of the FAIR project of GSI in Germany.The quench of the strand is simulated using FEM software ANSYS.From the simulation,the quench propagation can be visualized. Programming with APDL,the value of propagation velocity of normal zone is calculated.Also the voltage increasing over time of the strand is computed and pictured.Furthermore,the Minimum Propagation Zone(MPZ)is studied. At last,the relation between the current and the propagation velocity of normal zone,and the influence of initial temperature on quench propagation are studied.
基金This work was supported in part by the National Natural Science Foundation of China under Grant No.51807128State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No.LAPS20017.
文摘The fast-response feature from a superconducting magnetic energy storage(SMES)device is favored for suppressing instantaneous voltage and power fluctuations,but the SMES coil is much more expensive than a conventional battery energy storage device.In order to improve the energy utilization rate and reduce the energy storage cost under multiple-line power distribution conditions,this paper investigates a new interline DC dynamic voltage restorer(IDC-DVR)scheme with one SMES coil shared among multiple compensating circuits.In this new concept,an improved current-voltage(I/V)chopper assembly,which has a series of input/output power ports,is introduced to connect the single SMES coil with multiple power lines,and thereby satisfy the independent energy exchange requirements of any line to be compensated.Specifically,if two or more power lines have simultaneous compensating demands,the SMES coil can be selectively controlled to compensate the preferable line according to the priority order of the line.The feasibility of the proposed scheme is technically verified to maintain the transient voltage stability in multiple-line voltage swell and sag cases caused by either output voltage fluctuations from external power sources or power demand fluctuations from local sensitive loads.The simulation results provide a technical basis to develop a cost-effective SMES-based IDC-DVR for use in various DC distribution networks.
基金supported by National Natural Science Foundation of China(No.50977086)
文摘The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm.
基金supported by the National Natural Science Foundation of China(No.51807128)。
文摘Unpredictable power fluctuation and fault ridethrough capability attract increased attention as two uncertain major factors in doubly-fed induction generators(DFIGs)integrated DC power system.Present solutions usually require complicated cooperation comprising multiple modules of energy storage,current control,and voltage stabilizer.To overcome the drawbacks of existing solutions,this paper proposes a superconducting magnetic energy storage(SMES)integrated currentsource DC/DC converter(CSDC).It is mainly composed of a current-source back-to-back converter,and the SMES is tactfully embedded in series with the intermediate DC link.The proposed SMES-CSDC is installed in front of the DC-DFIG to carry out its dual abilities of load voltage stabilization under multifarious transient disturbances and power regulation under wind speed variations.Compared with the existing DC protection devices,the SMES-CSDC is designed on the basis of unique current-type energy storage.It has the advantages of fast response,extensive compensation range,concise hardware structure,and straightforward control strategy.The feasibility of the SMESCSDC is implemented via a scaled-down experiment,and its effectiveness for DC-DFIG protection is verified by a large-scale DC power system simulation.