I further study the manner by which a pair of opposite jets shape the“keyhole”morphological structure of the core-collapse supernova(CCSN)SN 1997A,now the CCSN remnant(CCSNR)1987A.By doing so,I strengthen the claim ...I further study the manner by which a pair of opposite jets shape the“keyhole”morphological structure of the core-collapse supernova(CCSN)SN 1997A,now the CCSN remnant(CCSNR)1987A.By doing so,I strengthen the claim that the jittering-jet explosion mechanism accounts for most,likely all,CCSNe.The“keyhole”structure comprises a northern low-intensity zone closed with a bright rim on its front and an elongated low-intensity nozzle in the south.This rim-nozzle asymmetry is observed in some cooling flow clusters and planetary nebulae that are observed to be shaped by jets.I build a toy model that uses the planar jittering jets pattern,where consecutive pairs of jets tend to jitter in a common plane,implying that the accreted gas onto the newly born neutron star at the late explosion phase flows perpendicular to that plane.This allows for a long-lived jet-launching episode.This long-lasting jet-launching episode launches more mass into the jets that can inflate larger pairs of ears or bubbles,forming the main jets'axis of the CCSNR that is not necessarily related to a possible pre-collapse core rotation.I discuss the relation of the main jets'axis to the neutron star's natal kick velocity.展开更多
I analyze a new X-ray image of the youngest supernova remnant(SNR)in the Galaxy,which is the type Ia SNR G1.9+0.3,and reveal a very clear point-symmetrical structure.Since explosion models of type Ia supernovae(SNe Ia...I analyze a new X-ray image of the youngest supernova remnant(SNR)in the Galaxy,which is the type Ia SNR G1.9+0.3,and reveal a very clear point-symmetrical structure.Since explosion models of type Ia supernovae(SNe Ia)do not form such morphologies,the point-symmetrical morphology must come from the circumstellar material(CSM)into which the ejecta expands.The large-scale point-symmetry that I identify and the known substantial deceleration of the ejecta of SNR G1.9+0.3 suggest a relatively massive CSM of■1M⊙.I argue that the most likely explanation is the explosion of this SN Ia into a planetary nebula.The scenario that predicts a large fraction of SN Ia inside PNe(SNIPs)is the core degenerate scenario.Other SN Ia scenarios might lead to only a very small fraction of SNIPs or none at all.展开更多
In this paper,we perform the detailed modeling for the light curves(LCs)of PTF 10iuv which is a calcium-rich(Ca-rich)supernova(SN)to constrain the physical properties of its ejecta and the energy sources,as well as th...In this paper,we perform the detailed modeling for the light curves(LCs)of PTF 10iuv which is a calcium-rich(Ca-rich)supernova(SN)to constrain the physical properties of its ejecta and the energy sources,as well as the explosion mechanism.We find that the^(56)Ni model and the56Ni plus circumstellar interaction model fail to explain the LCs,while the four-element(^(56)Ni,^(48)Cr,^(52)Fe,and^(44)Ti)model can account for the LCs.The ejecta mass of PTF10iuv derived by the model(1.52_(-0.25)^(+0.34)M_(⊙))is consistent with that of the merger of a sub-Chandrasekhar mass white dwarf.The early-time LCs were mainly powered by^(56)Ni whose mass is~0.03 M_(⊙),while the contributions of^(48)Cr and^(52)Fe can be neglected.The derived^(44)Ti mass(~0.25 M_(⊙))is~1.8 times the upper limit of the derived^(44)Ti mass of Ca-rich SN 2005E.We suggest that subtracting the contributions of the host-galaxy,which are unknown,and including the flux from other long-lived elements(e.g.,^(57)Co,^(55)Fe,^(60)Co)can reduce the amount of^(44)Ti,and that this value can be regarded as an upper limit.展开更多
The thin layer approximation applied to the expansion of a supernova remnant assumes that all the swept mass resides in a thin shell. The law of motion in the thin layer approximation is therefore found using the cons...The thin layer approximation applied to the expansion of a supernova remnant assumes that all the swept mass resides in a thin shell. The law of motion in the thin layer approximation is therefore found using the conservation of momentum. Here we instead introduce the conservation of energy in the framework of the thin layer approximation. The first case to be analysed is that of an interstellar medium with constant density and the second case is that of 7 profiles of decreasing density with respect to the centre of the explosion. The analytical and numerical results are applied to 4 supernova remnants: Tycho, Cas A, Cygnus loop, and SN 1006. The back reaction due to the radiative losses for the law of motion is evaluated in the case of constant density of the interstellar medium.展开更多
A spatial template is important to study nearby supernova remnants(SNRs).For SNR G332.5-5.6,we report a Gaussian disk with a radius of about 1°.06 to be a potential good spatial model in the γ-ray band.Employing...A spatial template is important to study nearby supernova remnants(SNRs).For SNR G332.5-5.6,we report a Gaussian disk with a radius of about 1°.06 to be a potential good spatial model in the γ-ray band.Employing this new Gaussian disk,its GeV lightcurve shows a significant variability of about seven sigma.The γ-ray observations of this SNR could be explained well either by a leptonic model or a hadronic model,in which a flat spectrum for the ejected electrons/protons is required.展开更多
Using an effective adiabatic index γ_(eff) to mimic the feedback of efficient shock acceleration,we simulate the temporal evolution of a young type Ia supernova remnant (SNR) with two different background magnetic fi...Using an effective adiabatic index γ_(eff) to mimic the feedback of efficient shock acceleration,we simulate the temporal evolution of a young type Ia supernova remnant (SNR) with two different background magnetic field(BMF) topologies:a uniform and a turbulent BMF.The density distribution and magnetic-field characteristics of our benchmark SNR are studied with two-dimensional cylindrical magnetohydrodynamic simulations.When γ_(eff)is considered,we find that:(1) the two-shock structure shrinks and the downstream magnetic-field orientation is dominated by the Rayleigh–Taylor instability structures;(2) there exists more quasi-radial magnetic fields inside the shocked region;and (3) inside the intershock region,both the quasi-radial magnetic energy density and the total magnetic energy density are enhanced:in the radial direction,with γ_(eff)=1.1,they are amplified about 10–26 times more than those with γ_(eff)=5/3.While in the angular direction,the total magnetic energy densities could be amplified about 350 times more than those with γ_(eff)=5/3,and there are more grid cells within the intershock region where the magnetic energy density is amplified by a factor greater than 100.展开更多
The Multi-channel Photometric Survey Telescope(Mephisto)is a real-time,three-color photometric system designed to capture the color evolution of stars and transients accurately.This telescope system can be crucial in ...The Multi-channel Photometric Survey Telescope(Mephisto)is a real-time,three-color photometric system designed to capture the color evolution of stars and transients accurately.This telescope system can be crucial in cosmological distance measurements of low-redshift(low-z,z■0.1)Type Ia supernovae(SNe Ia).To optimize the capabilities of this instrument,we perform a comprehensive simulation study before its official operation is scheduled to start.By considering the impact of atmospheric extinction,weather conditions,and the lunar phase at the observing site involving the instrumental features,we simulate light curves of SNe Ia obtained by Mephisto.The best strategy in the case of SN Ia cosmology is to take the image at an exposure time of 130 s with a cadence of 3 days.In this condition,Mephisto can obtain hundreds of high-quality SNe Ia to achieve a distance measurement better than 4.5%.Given the on-time spectral classification and monitoring of the Lijiang 2.4 m Telescope at the same observatory,Mephisto,in the whole operation,can significantly enrich the well-calibrated sample of supernovae at low-z and improve the calibration accuracy of high-z SNe Ia.展开更多
Cassiopeia A(Cas A) is a well-known candidate for studying cosmic-ray acceleration, in which compact features of various scales have attracted much attention. Based on observations by the Very Large Array of Cas A at ...Cassiopeia A(Cas A) is a well-known candidate for studying cosmic-ray acceleration, in which compact features of various scales have attracted much attention. Based on observations by the Very Large Array of Cas A at 6 cm and 21 cm, we measure the spectral index distribution of various scale components using the observation of the 1998 epoch. We decompose its total density image into nine scale components, and map the temperature spectral index distribution of each component, which ranges from-2.48 ± 0.01 to-2.91 ± 0.05. We find that the spectral indices increase from the small scale to large scale components. A damped post-shock magnetic field model with a strength larger than ~200 μG and a damping length scale less than ~10% of the remnant radius can account for the spectral index variation naturally.展开更多
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea...Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.展开更多
This study investigates the X-ray properties and evolution of Type II supernovae (SNe II) observed by Swift, examining variations among supernovae and exploring their X-ray characteristics over time. We present the fi...This study investigates the X-ray properties and evolution of Type II supernovae (SNe II) observed by Swift, examining variations among supernovae and exploring their X-ray characteristics over time. We present the first X-ray study of the Type IIp supernova SN 2008ij using data from the Swift X-ray mission. This investigation focuses on its spectral properties, identifying an X-ray flux of 1.20 (+0.11, −0.10) × 10−13 erg/cm2/s and a plasma temperature of 4.76 (+1.22, −0.83) keV. Our study marks an advancement in understanding SN 2008ij, providing crucial results into its X-ray emission characteristics. These results lay the groundwork for future studies of Type IIp supernovae, offering a foundation for exploring their evolutionary and physical processes.展开更多
The theory of the conservation of energy in the thin layer approximation has been extended to special relativity. Four models for the density of the circumstellar medium are analyzed, which are represented by constant...The theory of the conservation of energy in the thin layer approximation has been extended to special relativity. Four models for the density of the circumstellar medium are analyzed, which are represented by constant, power law, exponential and Emden (<em>n</em> = 5) profile for density. The astrophysical results are presented in a numerical way, except for a Taylor expansion of the four trajectories in the surrounding of the origin. The free parameters of the models are particularized for SN1993j, for which the radius versus time is known. Some evaluations on the time dilation are presented.展开更多
I identify a point-symmetric structure in recently published VLT/MUSE velocity maps of different elements in a plane along the line of sight at the center of the supernova remnant SNR 0540-69.3,and argue that jitterin...I identify a point-symmetric structure in recently published VLT/MUSE velocity maps of different elements in a plane along the line of sight at the center of the supernova remnant SNR 0540-69.3,and argue that jittering jets that exploded this core collapse supernova shaped this point-symmetric structure.The four pairs of two opposite clumps that compose this point symmetric structure suggest that two to four pairs of jittering jets shaped the inner ejecta in this plane.In addition,intensity images of several spectral lines reveal a faint strip(the main jet-axis)that is part of this plane of jittering jets and its similarity to morphological features in a few other SNRs and in some planetary nebulae further suggests shaping by jets.My interpretation implies that in addition to instabilities,jets also mix elements in the ejecta of core collapse supernovae.Based on the point-symmetric structure and under the assumption that jittering jets exploded this supernova,I estimate the component of the neutron star natal kick velocity on the plane of the sky to be■235 km s^(-1),and at an angle of■47°to the direction of the main jet-axis.I analyze this natal kick direction together with 12 other SNRs in the frame of the jittering jets explosion mechanism.展开更多
Here we extend the conservation of energy in the framework of the thin layer approximation to the asymmetrical case. Four types of interstellar mediums are analysed, in which the density follows an inverse square prof...Here we extend the conservation of energy in the framework of the thin layer approximation to the asymmetrical case. Four types of interstellar mediums are analysed, in which the density follows an inverse square profile, a power law profile, an exponential profile and a toroidal profile. An analytical solution for the radius as a function of time and the polar angle in spherical coordinates is derived in the case of the inverse square profile. The analytical and numerical results are applied to two supernova remnants: SN 1987A and SN 1006. The back reaction due to the radiative losses is evaluated in the case of the inverse square profile for the surrounding medium. Two models for the image formation are presented, which explain the triple ring visible in SN 1987A and the jet feature of SN 1006.展开更多
The light curves (LC) for Supernova (SN) can be modeled adopting the conversion of the flux of kinetic energy into radiation. This conversion requires an analytical or a numerical law of motion for the expanding radiu...The light curves (LC) for Supernova (SN) can be modeled adopting the conversion of the flux of kinetic energy into radiation. This conversion requires an analytical or a numerical law of motion for the expanding radius of the SN. In the framework of conservation of energy for the thin layer approximation, we present a classical trajectory based on a power law profile for the density, a relativistic trajectory based on the Navarro-Frenk-White profile for the density, and a relativistic trajectory based on a power law behaviour for the swept mass. A detailed simulation of the LC requires the evaluation of the optical depth as a function of time. We modeled the LC of SN 1993J in different astronomical bands, the LC of GRB 050814 and the LC GRB 060729 in the keV region. The time dependence of the magnetic field of equipartition is derived from the theoretical formula for the luminosity.展开更多
Abstract The optical observations of the type Ic supernova (SN lc) SN 2012ap in NGC 1729 are presented. A comparison with other SNe Ic indicates that SN 2012ap is highly reddened (with E(B - V)host-0.8 mag) and ...Abstract The optical observations of the type Ic supernova (SN lc) SN 2012ap in NGC 1729 are presented. A comparison with other SNe Ic indicates that SN 2012ap is highly reddened (with E(B - V)host-0.8 mag) and may represent one of the most luminous SNe Ic ever observed, with an absolute V-band peak magnitude of - 19.3±0.5 mag after extinction correction. The near-maximum-light spectrum shows wide spectral features that are typical of broad-lined SNe Ic. One interesting feature in the spectrum is the appearance of some narrow absorption features that can be at- tributed to the diffuse interstellar bands, consistent with the large reddening inferred from the photometric method. Based on the light curves and the spectral data, we esti- mate that SN 2012ap produced a 56Ni mass of - 0.3 -b 0.1M in the explosion, with an ejecta mass of 2.4^+0.7 -0.7M and a kinetic energy of EK=1.1^+0.4 -0.4×10^52 erg. The properties of its progenitor are also briefly discussed.展开更多
Under the assumption that jets explode all core collapse supernovae(CCSNe),I classify 14 CCSN remnants(CCSNRs)into five groups according to their morphology as shaped by jets,and attribute the classes to the specific ...Under the assumption that jets explode all core collapse supernovae(CCSNe),I classify 14 CCSN remnants(CCSNRs)into five groups according to their morphology as shaped by jets,and attribute the classes to the specific angular momentum of the pre-collapse core.Point-symmetry(one CCSNR):According to the jittering jets explosion mechanism(JJEM)when the pre-collapse core rotates very slowly,the newly born neutron star(NS)launches tens of jet-pairs in all directions.The last several jet-pairs might leave an imprint of several pairs of“ears,”i.e.,a point-symmetric morphology.One pair of ears(eight CCSNRs):More rapidly rotating cores might force the last pair of jets to be long-lived and shape one pair of jet-inflated ears that dominates the morphology.S-shaped(one CCSNR):The accretion disk might precess,leading to an S-shaped morphology.Barrel-shaped(three CCSNRs):Even more rapidly rotating pre-collapse cores might result in a final energetic pair of jets that clear the region along the axis of the pre-collapse core rotation and form a barrel-shaped morphology.Elongated(one CCSNR):A very rapidly rotating pre-collapse core forces all jets to be along the same axis such that the jets are inefficient in expelling mass from the equatorial plane and the long-lasting accretion process turns the NS into a black hole.The two new results of this study are the classification of CCSNRs into five classes based on jet-shaped morphological features,and the attribution of the morphological classes mainly to the pre-collapse core rotation in the frame of the JJEM.展开更多
I review studies of core collapse supernovae(CCSNe) and similar transient events that attribute major roles to jets in powering most CCSNe and in shaping their ejecta. I start with reviewing the jittering jets explosi...I review studies of core collapse supernovae(CCSNe) and similar transient events that attribute major roles to jets in powering most CCSNe and in shaping their ejecta. I start with reviewing the jittering jets explosion mechanism that I take to power most CCSN explosions. Neutrino heating does play a role in boosting the jets. I compare the morphologies of some CCSN remnants to planetary nebulae to conclude that jets and instabilities are behind the shaping of their ejecta. I then discuss CCSNe that are descendants of rapidly rotating collapsing cores that result in fixed-axis jets(with small jittering) that shape bipolar ejecta. A large fraction of the bipolar CCSNe are superluminous supernovae(SLSNe). I conclude that modeling of SLSN light curves and bumps in the light curves must include jets, even when considering energetic magnetars and/or ejecta interaction with the circumstellar matter(CSM). I connect the properties of bipolar CCSNe to common envelope jets supernovae(CEJSNe) where an old neutron star or a black hole spirals-in inside the envelope and then inside the core of a red supergiant. I discuss how jets can shape the pre-explosion CSM, as in Supernova 1987A, and can power pre-explosion outbursts(precursors)in binary system progenitors of CCSNe and CEJSNe. Binary interaction also facilitates the launching of postexplosion jets.展开更多
I estimate the energy that neutrino heating adds to the outflow that jets induce in the collapsing core material in core collapse supernovae(CCSNe), and find that this energy crudely doubles the energy that the jets d...I estimate the energy that neutrino heating adds to the outflow that jets induce in the collapsing core material in core collapse supernovae(CCSNe), and find that this energy crudely doubles the energy that the jets deposit into the outer core. I consider the jittering jets explosion mechanism where there are several stochastic jet-launching episodes, each lasting for about 0.01–0.1 s. The collapsing core material passes through the stalled shock at about100 km and then slowly flows onto the proto-neutron star(NS). I assume that the proto-NS launches jittering jets,and that the jets break out from the stalled shock. I examine the boosting process by which the high-pressure gas inside the stalled shock, the gain region material, expands alongside the jets and does work on the material that the jets shock, the cocoon. This work is crudely equal to the energy that the original jets carry. I argue that the coupling between instabilities, stochastic rotation, magnetic fields, and jittering jets leads to most CCSN explosions. In other cases, the pre-collapse core is rapidly rotating and therefore ordered rotation replaces stochastic rotation and fixed jets replace jittering jets.展开更多
I use recent observations of circumstellar matter(CSM)around type Ia supernovae(SNe Ia)to estimate the fraction of SNe Ia that explode into a planetary nebula(PN)and to suggest a new delay time distribution from the c...I use recent observations of circumstellar matter(CSM)around type Ia supernovae(SNe Ia)to estimate the fraction of SNe Ia that explode into a planetary nebula(PN)and to suggest a new delay time distribution from the common envelope evolution(CEE)to the SN Ia explosion for SNe Ia that occur shortly after the CEE.Under the assumption that the CSM results from a CEE,I crudely estimate that about 50%of all SNe Ia are SNe Ia inside PNe(SNIPs),and that the explosions of most SNIPs occur within a CEE to explosion delay(CEED)time of less than about ten thousand years.I also estimate that the explosion rate of SNIPs,i.e.,the CEED time distribution,is roughly constant within this timescale of ten thousand years.The short CEED time suggests that a fraction of SNIPs come from the core-degenerate(CD)scenario where the merger of the core with the white dwarf takes place at the end of the CEE.I present my view that the majority of SNIPs come from the CD scenario.I list some further observations that might support or reject my claims,and describe the challenge to theoretical studies to find a process to explain a merger to explosion delay(MED)time of up to ten thousand years or so.A long MED will apply also to the double degenerate scenario.展开更多
In this paper we derive three equations of motion for a supernova remnant (SNR) in the framework of the thin layer approximation using the Padé approximant. The circumstellar medium is assumed to follow a density...In this paper we derive three equations of motion for a supernova remnant (SNR) in the framework of the thin layer approximation using the Padé approximant. The circumstellar medium is assumed to follow a density profile of either an exponential type, a Gaussian type, or a Lane-Emden (n = 5) type. The three equations of motion are applied to four SNRs: Tycho, Cas A, Cygnus loop, and SN 1006. The percentage error of the Padé approximated solution is always less than 10%. The theoretical decrease of the velocity over ten years for SNRs is evaluated.展开更多
文摘I further study the manner by which a pair of opposite jets shape the“keyhole”morphological structure of the core-collapse supernova(CCSN)SN 1997A,now the CCSN remnant(CCSNR)1987A.By doing so,I strengthen the claim that the jittering-jet explosion mechanism accounts for most,likely all,CCSNe.The“keyhole”structure comprises a northern low-intensity zone closed with a bright rim on its front and an elongated low-intensity nozzle in the south.This rim-nozzle asymmetry is observed in some cooling flow clusters and planetary nebulae that are observed to be shaped by jets.I build a toy model that uses the planar jittering jets pattern,where consecutive pairs of jets tend to jitter in a common plane,implying that the accreted gas onto the newly born neutron star at the late explosion phase flows perpendicular to that plane.This allows for a long-lived jet-launching episode.This long-lasting jet-launching episode launches more mass into the jets that can inflate larger pairs of ears or bubbles,forming the main jets'axis of the CCSNR that is not necessarily related to a possible pre-collapse core rotation.I discuss the relation of the main jets'axis to the neutron star's natal kick velocity.
基金supported by a grant from the Israel Science Foundation(769/20)。
文摘I analyze a new X-ray image of the youngest supernova remnant(SNR)in the Galaxy,which is the type Ia SNR G1.9+0.3,and reveal a very clear point-symmetrical structure.Since explosion models of type Ia supernovae(SNe Ia)do not form such morphologies,the point-symmetrical morphology must come from the circumstellar material(CSM)into which the ejecta expands.The large-scale point-symmetry that I identify and the known substantial deceleration of the ejecta of SNR G1.9+0.3 suggest a relatively massive CSM of■1M⊙.I argue that the most likely explanation is the explosion of this SN Ia into a planetary nebula.The scenario that predicts a large fraction of SN Ia inside PNe(SNIPs)is the core degenerate scenario.Other SN Ia scenarios might lead to only a very small fraction of SNIPs or none at all.
基金supported by National Natural Science Foundation of China(NSFC,grant Nos.11963001,12133003,11833003,11973020(C0035736),and U1938201)supported by the Guangxi Talent Program(“Highland of Innovation Talents”)。
文摘In this paper,we perform the detailed modeling for the light curves(LCs)of PTF 10iuv which is a calcium-rich(Ca-rich)supernova(SN)to constrain the physical properties of its ejecta and the energy sources,as well as the explosion mechanism.We find that the^(56)Ni model and the56Ni plus circumstellar interaction model fail to explain the LCs,while the four-element(^(56)Ni,^(48)Cr,^(52)Fe,and^(44)Ti)model can account for the LCs.The ejecta mass of PTF10iuv derived by the model(1.52_(-0.25)^(+0.34)M_(⊙))is consistent with that of the merger of a sub-Chandrasekhar mass white dwarf.The early-time LCs were mainly powered by^(56)Ni whose mass is~0.03 M_(⊙),while the contributions of^(48)Cr and^(52)Fe can be neglected.The derived^(44)Ti mass(~0.25 M_(⊙))is~1.8 times the upper limit of the derived^(44)Ti mass of Ca-rich SN 2005E.We suggest that subtracting the contributions of the host-galaxy,which are unknown,and including the flux from other long-lived elements(e.g.,^(57)Co,^(55)Fe,^(60)Co)can reduce the amount of^(44)Ti,and that this value can be regarded as an upper limit.
文摘The thin layer approximation applied to the expansion of a supernova remnant assumes that all the swept mass resides in a thin shell. The law of motion in the thin layer approximation is therefore found using the conservation of momentum. Here we instead introduce the conservation of energy in the framework of the thin layer approximation. The first case to be analysed is that of an interstellar medium with constant density and the second case is that of 7 profiles of decreasing density with respect to the centre of the explosion. The analytical and numerical results are applied to 4 supernova remnants: Tycho, Cas A, Cygnus loop, and SN 1006. The back reaction due to the radiative losses for the law of motion is evaluated in the case of constant density of the interstellar medium.
基金supported by the National Natural Science Foundation of China under grant 12065017the Jiangxi Provincial Natural Science Foundation of China under grant Nos.20224ACB211001 and 20212BAB201029。
文摘A spatial template is important to study nearby supernova remnants(SNRs).For SNR G332.5-5.6,we report a Gaussian disk with a radius of about 1°.06 to be a potential good spatial model in the γ-ray band.Employing this new Gaussian disk,its GeV lightcurve shows a significant variability of about seven sigma.The γ-ray observations of this SNR could be explained well either by a leptonic model or a hadronic model,in which a flat spectrum for the ejected electrons/protons is required.
基金supported by the National Natural Science Foundation of China 12233006partially supported by the National Natural Science Foundation of China 12203042the Foundations of Yunnan Province 202301AU070009。
文摘Using an effective adiabatic index γ_(eff) to mimic the feedback of efficient shock acceleration,we simulate the temporal evolution of a young type Ia supernova remnant (SNR) with two different background magnetic field(BMF) topologies:a uniform and a turbulent BMF.The density distribution and magnetic-field characteristics of our benchmark SNR are studied with two-dimensional cylindrical magnetohydrodynamic simulations.When γ_(eff)is considered,we find that:(1) the two-shock structure shrinks and the downstream magnetic-field orientation is dominated by the Rayleigh–Taylor instability structures;(2) there exists more quasi-radial magnetic fields inside the shocked region;and (3) inside the intershock region,both the quasi-radial magnetic energy density and the total magnetic energy density are enhanced:in the radial direction,with γ_(eff)=1.1,they are amplified about 10–26 times more than those with γ_(eff)=5/3.While in the angular direction,the total magnetic energy densities could be amplified about 350 times more than those with γ_(eff)=5/3,and there are more grid cells within the intershock region where the magnetic energy density is amplified by a factor greater than 100.
基金supported by the National Key R&D Program of China(2021YFA1600404)the National Natural Science Foundation of China(NSFC,grant No.12173082)+11 种基金science research grants from the China Manned Space Project(CMS-CSST-2021-A12)the Yunnan Province Foundation(202201AT070069)the Top-notch Young Talents Program of Yunnan Provincethe Light of West China Program provided by the Chinese Academy of Sciencesthe International Centre of Supernovae,Yunnan Key Laboratory(202302AN360001)Funding for the LJT has been provided by the CAS and the People’s Government of Yunnan Provincefunded by the“Yunnan University Development Plan for World-Class University”“Yunnan University Development Plan for World-Class Astronomy Discipline”obtained supports from the“Science&Technology Champion Project”(202005AB160002)from two“Team Projects”—the“Innovation Team”(202105AE160021)the“Top Team”(202305AT350002)funded by the“Yunnan Revitalization Talent Support Program.”。
文摘The Multi-channel Photometric Survey Telescope(Mephisto)is a real-time,three-color photometric system designed to capture the color evolution of stars and transients accurately.This telescope system can be crucial in cosmological distance measurements of low-redshift(low-z,z■0.1)Type Ia supernovae(SNe Ia).To optimize the capabilities of this instrument,we perform a comprehensive simulation study before its official operation is scheduled to start.By considering the impact of atmospheric extinction,weather conditions,and the lunar phase at the observing site involving the instrumental features,we simulate light curves of SNe Ia obtained by Mephisto.The best strategy in the case of SN Ia cosmology is to take the image at an exposure time of 130 s with a cadence of 3 days.In this condition,Mephisto can obtain hundreds of high-quality SNe Ia to achieve a distance measurement better than 4.5%.Given the on-time spectral classification and monitoring of the Lijiang 2.4 m Telescope at the same observatory,Mephisto,in the whole operation,can significantly enrich the well-calibrated sample of supernovae at low-z and improve the calibration accuracy of high-z SNe Ia.
基金support from the National Natural Science Foundation of China(NSFC,Grant Nos.12041301 and 12073039)the China Manned Space Project(CMS-CSST2021-A09)the Youth Innovation Promotion Association of CAS(2023000015)。
文摘Cassiopeia A(Cas A) is a well-known candidate for studying cosmic-ray acceleration, in which compact features of various scales have attracted much attention. Based on observations by the Very Large Array of Cas A at 6 cm and 21 cm, we measure the spectral index distribution of various scale components using the observation of the 1998 epoch. We decompose its total density image into nine scale components, and map the temperature spectral index distribution of each component, which ranges from-2.48 ± 0.01 to-2.91 ± 0.05. We find that the spectral indices increase from the small scale to large scale components. A damped post-shock magnetic field model with a strength larger than ~200 μG and a damping length scale less than ~10% of the remnant radius can account for the spectral index variation naturally.
文摘Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.
文摘This study investigates the X-ray properties and evolution of Type II supernovae (SNe II) observed by Swift, examining variations among supernovae and exploring their X-ray characteristics over time. We present the first X-ray study of the Type IIp supernova SN 2008ij using data from the Swift X-ray mission. This investigation focuses on its spectral properties, identifying an X-ray flux of 1.20 (+0.11, −0.10) × 10−13 erg/cm2/s and a plasma temperature of 4.76 (+1.22, −0.83) keV. Our study marks an advancement in understanding SN 2008ij, providing crucial results into its X-ray emission characteristics. These results lay the groundwork for future studies of Type IIp supernovae, offering a foundation for exploring their evolutionary and physical processes.
文摘The theory of the conservation of energy in the thin layer approximation has been extended to special relativity. Four models for the density of the circumstellar medium are analyzed, which are represented by constant, power law, exponential and Emden (<em>n</em> = 5) profile for density. The astrophysical results are presented in a numerical way, except for a Taylor expansion of the four trajectories in the surrounding of the origin. The free parameters of the models are particularized for SN1993j, for which the radius versus time is known. Some evaluations on the time dilation are presented.
基金supported by a grant from the Israel Science Foundation(769/20)。
文摘I identify a point-symmetric structure in recently published VLT/MUSE velocity maps of different elements in a plane along the line of sight at the center of the supernova remnant SNR 0540-69.3,and argue that jittering jets that exploded this core collapse supernova shaped this point-symmetric structure.The four pairs of two opposite clumps that compose this point symmetric structure suggest that two to four pairs of jittering jets shaped the inner ejecta in this plane.In addition,intensity images of several spectral lines reveal a faint strip(the main jet-axis)that is part of this plane of jittering jets and its similarity to morphological features in a few other SNRs and in some planetary nebulae further suggests shaping by jets.My interpretation implies that in addition to instabilities,jets also mix elements in the ejecta of core collapse supernovae.Based on the point-symmetric structure and under the assumption that jittering jets exploded this supernova,I estimate the component of the neutron star natal kick velocity on the plane of the sky to be■235 km s^(-1),and at an angle of■47°to the direction of the main jet-axis.I analyze this natal kick direction together with 12 other SNRs in the frame of the jittering jets explosion mechanism.
文摘Here we extend the conservation of energy in the framework of the thin layer approximation to the asymmetrical case. Four types of interstellar mediums are analysed, in which the density follows an inverse square profile, a power law profile, an exponential profile and a toroidal profile. An analytical solution for the radius as a function of time and the polar angle in spherical coordinates is derived in the case of the inverse square profile. The analytical and numerical results are applied to two supernova remnants: SN 1987A and SN 1006. The back reaction due to the radiative losses is evaluated in the case of the inverse square profile for the surrounding medium. Two models for the image formation are presented, which explain the triple ring visible in SN 1987A and the jet feature of SN 1006.
文摘The light curves (LC) for Supernova (SN) can be modeled adopting the conversion of the flux of kinetic energy into radiation. This conversion requires an analytical or a numerical law of motion for the expanding radius of the SN. In the framework of conservation of energy for the thin layer approximation, we present a classical trajectory based on a power law profile for the density, a relativistic trajectory based on the Navarro-Frenk-White profile for the density, and a relativistic trajectory based on a power law behaviour for the swept mass. A detailed simulation of the LC requires the evaluation of the optical depth as a function of time. We modeled the LC of SN 1993J in different astronomical bands, the LC of GRB 050814 and the LC GRB 060729 in the keV region. The time dependence of the magnetic field of equipartition is derived from the theoretical formula for the luminosity.
基金Supported by the National Natural Science Foundation of China
文摘Abstract The optical observations of the type Ic supernova (SN lc) SN 2012ap in NGC 1729 are presented. A comparison with other SNe Ic indicates that SN 2012ap is highly reddened (with E(B - V)host-0.8 mag) and may represent one of the most luminous SNe Ic ever observed, with an absolute V-band peak magnitude of - 19.3±0.5 mag after extinction correction. The near-maximum-light spectrum shows wide spectral features that are typical of broad-lined SNe Ic. One interesting feature in the spectrum is the appearance of some narrow absorption features that can be at- tributed to the diffuse interstellar bands, consistent with the large reddening inferred from the photometric method. Based on the light curves and the spectral data, we esti- mate that SN 2012ap produced a 56Ni mass of - 0.3 -b 0.1M in the explosion, with an ejecta mass of 2.4^+0.7 -0.7M and a kinetic energy of EK=1.1^+0.4 -0.4×10^52 erg. The properties of its progenitor are also briefly discussed.
基金supported by a grant from the Israel Science Foundation(769/20)。
文摘Under the assumption that jets explode all core collapse supernovae(CCSNe),I classify 14 CCSN remnants(CCSNRs)into five groups according to their morphology as shaped by jets,and attribute the classes to the specific angular momentum of the pre-collapse core.Point-symmetry(one CCSNR):According to the jittering jets explosion mechanism(JJEM)when the pre-collapse core rotates very slowly,the newly born neutron star(NS)launches tens of jet-pairs in all directions.The last several jet-pairs might leave an imprint of several pairs of“ears,”i.e.,a point-symmetric morphology.One pair of ears(eight CCSNRs):More rapidly rotating cores might force the last pair of jets to be long-lived and shape one pair of jet-inflated ears that dominates the morphology.S-shaped(one CCSNR):The accretion disk might precess,leading to an S-shaped morphology.Barrel-shaped(three CCSNRs):Even more rapidly rotating pre-collapse cores might result in a final energetic pair of jets that clear the region along the axis of the pre-collapse core rotation and form a barrel-shaped morphology.Elongated(one CCSNR):A very rapidly rotating pre-collapse core forces all jets to be along the same axis such that the jets are inefficient in expelling mass from the equatorial plane and the long-lasting accretion process turns the NS into a black hole.The two new results of this study are the classification of CCSNRs into five classes based on jet-shaped morphological features,and the attribution of the morphological classes mainly to the pre-collapse core rotation in the frame of the JJEM.
基金supported by a grant from the Israel Science Foundation (769/20)。
文摘I review studies of core collapse supernovae(CCSNe) and similar transient events that attribute major roles to jets in powering most CCSNe and in shaping their ejecta. I start with reviewing the jittering jets explosion mechanism that I take to power most CCSN explosions. Neutrino heating does play a role in boosting the jets. I compare the morphologies of some CCSN remnants to planetary nebulae to conclude that jets and instabilities are behind the shaping of their ejecta. I then discuss CCSNe that are descendants of rapidly rotating collapsing cores that result in fixed-axis jets(with small jittering) that shape bipolar ejecta. A large fraction of the bipolar CCSNe are superluminous supernovae(SLSNe). I conclude that modeling of SLSN light curves and bumps in the light curves must include jets, even when considering energetic magnetars and/or ejecta interaction with the circumstellar matter(CSM). I connect the properties of bipolar CCSNe to common envelope jets supernovae(CEJSNe) where an old neutron star or a black hole spirals-in inside the envelope and then inside the core of a red supergiant. I discuss how jets can shape the pre-explosion CSM, as in Supernova 1987A, and can power pre-explosion outbursts(precursors)in binary system progenitors of CCSNe and CEJSNe. Binary interaction also facilitates the launching of postexplosion jets.
基金supported by a grant from the Israel Science Foundation (769/20)。
文摘I estimate the energy that neutrino heating adds to the outflow that jets induce in the collapsing core material in core collapse supernovae(CCSNe), and find that this energy crudely doubles the energy that the jets deposit into the outer core. I consider the jittering jets explosion mechanism where there are several stochastic jet-launching episodes, each lasting for about 0.01–0.1 s. The collapsing core material passes through the stalled shock at about100 km and then slowly flows onto the proto-neutron star(NS). I assume that the proto-NS launches jittering jets,and that the jets break out from the stalled shock. I examine the boosting process by which the high-pressure gas inside the stalled shock, the gain region material, expands alongside the jets and does work on the material that the jets shock, the cocoon. This work is crudely equal to the energy that the original jets carry. I argue that the coupling between instabilities, stochastic rotation, magnetic fields, and jittering jets leads to most CCSN explosions. In other cases, the pre-collapse core is rapidly rotating and therefore ordered rotation replaces stochastic rotation and fixed jets replace jittering jets.
基金supported by a grant from the Israel Science Foundation(769/20)。
文摘I use recent observations of circumstellar matter(CSM)around type Ia supernovae(SNe Ia)to estimate the fraction of SNe Ia that explode into a planetary nebula(PN)and to suggest a new delay time distribution from the common envelope evolution(CEE)to the SN Ia explosion for SNe Ia that occur shortly after the CEE.Under the assumption that the CSM results from a CEE,I crudely estimate that about 50%of all SNe Ia are SNe Ia inside PNe(SNIPs),and that the explosions of most SNIPs occur within a CEE to explosion delay(CEED)time of less than about ten thousand years.I also estimate that the explosion rate of SNIPs,i.e.,the CEED time distribution,is roughly constant within this timescale of ten thousand years.The short CEED time suggests that a fraction of SNIPs come from the core-degenerate(CD)scenario where the merger of the core with the white dwarf takes place at the end of the CEE.I present my view that the majority of SNIPs come from the CD scenario.I list some further observations that might support or reject my claims,and describe the challenge to theoretical studies to find a process to explain a merger to explosion delay(MED)time of up to ten thousand years or so.A long MED will apply also to the double degenerate scenario.
文摘In this paper we derive three equations of motion for a supernova remnant (SNR) in the framework of the thin layer approximation using the Padé approximant. The circumstellar medium is assumed to follow a density profile of either an exponential type, a Gaussian type, or a Lane-Emden (n = 5) type. The three equations of motion are applied to four SNRs: Tycho, Cas A, Cygnus loop, and SN 1006. The percentage error of the Padé approximated solution is always less than 10%. The theoretical decrease of the velocity over ten years for SNRs is evaluated.