High-fidelity aerodynamic optimization of compressors is afflicted by the"curse of dimensionality",which limits its engineering applications.This paper proposes a new multi-degrees-of-freedom(MDOF)surface pa...High-fidelity aerodynamic optimization of compressors is afflicted by the"curse of dimensionality",which limits its engineering applications.This paper proposes a new multi-degrees-of-freedom(MDOF)surface parameterization method that combines the characteristics of conventional surface parameterization methods,low-dimensionality and surface smoothness,with the advantages of design flexibility and ease of construction.The proposed method is applied to the high-fidelity aerodynamic optimization of Rotor37.An optimized solution is obtained within 111 h by combining a phased optimization strategy based on the idea of modal optimization.To explore a better way of setting the control variables of the blade body,two methods of varying the control points of the suction and pressure surfaces,independent change and synchronous change,are compared.Synchronous change has better flexibility,and under the condition of satisfying the constraints,it increases the efficiency at the design point by 2.2%and the surge margin by 0.5%.This demonstrates the effectiveness of the proposed method in the high-fidelity aerodynamic optimization of compressors.It also provides technical support to solve the"curse of dimensionality"problem.展开更多
The effects of surface flux parameterizations on tropical cyclone(TC) intensity and structure are investigated using the Advanced Research Weather Research and Forecasting(WRF-ARW) modeling system with high-resolu...The effects of surface flux parameterizations on tropical cyclone(TC) intensity and structure are investigated using the Advanced Research Weather Research and Forecasting(WRF-ARW) modeling system with high-resolution simulations of Typhoon Morakot(2009).Numerical experiments are designed to simulate Typhoon Morakot(2009) with different formulations of surface exchange coefficients for enthalpy(C_K) and momentum(C_D) transfers,including those from recent observational studies based on in situ aircraft data collected in Atlantic hurricanes.The results show that the simulated intensity and structure are sensitive to C_K and C_D,but the simulated track is not.Consistent with previous studies,the simulated storm intensity is found to be more sensitive to the ratio of C_K/C_D than to C_K or C_D alone.The pressure-wind relationship is also found to be influenced by the exchange coefficients,consistent with recent numerical studies.This paper emphasizes the importance of C_D and C_K on TC structure simulations.The results suggest that C_D and C_K have a large impact on surface wind and flux distributions,boundary layer heights,the warm core,and precipitation.Compared to available observations,the experiment with observed C_D and C_K generally simulated better intensity and structure than the other experiments,especially over the ocean.The reasons for the structural differences among the experiments with different C_D and C_K setups are discussed in the context of TC dynamics and thermodynamics.展开更多
The investigation of influence of surface effects on the energy spectra of elect rons is essential for comprehensive understanding of electron-solid interactions as well as quantitative analysis. The accuracy of the a...The investigation of influence of surface effects on the energy spectra of elect rons is essential for comprehensive understanding of electron-solid interactions as well as quantitative analysis. The accuracy of the analysis depends on the m odels for elastic and inelastic interactions. Electrons impinging on a solid or escaping from it suffer losses in the surface layer. The energy loss spectra the refore have contributions from surface excitations. The role of surface excitati ons is characterized by surface excitation parameter (SEP), which indicates the number of surface plasmons created by an electron crossing the surface. The imag inary part of complex self-energy of an electron is related to the energy loss c ross section. SEP is numerically computed using self-energy formalism and compar ed with the results as described and calculated by different workers.展开更多
Electron inelastic mean free path (IMFP) is an important parameter for surface chemical quantification by surface electron spectroscopy techniques. It can be obtained from analysis of elastic peak electron spectrosc...Electron inelastic mean free path (IMFP) is an important parameter for surface chemical quantification by surface electron spectroscopy techniques. It can be obtained from analysis of elastic peak electron spectroscopy (EPES) spectra measured on samples and a Monte Carlo simulation method. To obtain IMFP parameters with high accuracy, the surface excitation effect on the measured EPES spectra has to be quantified as a surface excitation parameter (SEP), which can be calculated via a dielectric response theory. However, such calculated SEP does not include influence of elastic scattering of electrons inside samples during their incidence and emission processes, which should not be neglected simply in determining IMFP by an EPES method. In this work a Monte Carlo simulation method is employed to determine surface excitation parameter by taking account of the elastic scattering effect. The simulated SEPs for different primary energies are found to be in good agreement with the experiments particularly for larger incident or emission angles above 60° where the elastic scattering effect plays a more important role than those in smaller incident or emission angles. Based on these new SEPs, the IMFP measurement by EPES technique can provide more accurate data.展开更多
Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- t...Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- tion methodology and simultaneously a performance evaluation technique based on drill cuttings produced and drilling rate achieved. In all 28 blast drilled through were investigated. The drilling was accomplished by 5 different drill machines of Ingersoll-Rand and Revathi working in coal mines of Sonepur Bazari (SECL) and Block-II (BCCL). The drills are Rotary and Rotary Percussive type using tri- cone rock roller bits. Drill cuttings were collected and sieve analysis was done in the laboratory. Using Rosin Ramler Diagram, coarseness index (CI), mean chip size (d), specific-st trace area (SSA) and charac- teristic particle size distribution curves for all the holes drilled were plotted. The predictor equation for drill penetration rate established through multiple regressions was found to have a very good correlation with an index of determination of 0.85. A comparative analysis of particle size distribution curves was used to evaluate the drill efficiency. The suggested approach utilises the area under the curve, after the point of trend reversal and brittleness ratio of the respective bench to arrive at drill energy utilization index (DEUI), for mapping of drill machine to bench, The developed DEU1 can aid in selecting or mapping a right machine to right bench for achieving higher penetration rate and utilizations.展开更多
Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau.It plays a crucial role in runoff regulation.Investigations on the mechanisms of water and heat exchanges are necessary to underst...Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau.It plays a crucial role in runoff regulation.Investigations on the mechanisms of water and heat exchanges are necessary to understand the land surface processes over the alpine wetland.This study explores the characteristics of hydro-meteorological factors with in situ observations and uses the Community Land Model 5 to identify the main factors controlling water and heat exchanges.Latent heat flux and thermal roughness length were found to be greater in the warm season(June–August)than in the cold season(December–February),with a frozen depth of 20–40 cm over the alpine wetland.The transfers of heat fluxes were mainly controlled by longwave radiation and air temperature and affected by root distribution.Air pressure and stomatal conductance were also important to latent heat flux,and soil solid water content was important to sensible heat flux.Soil temperature was dominated by longwave radiation and air temperature,with crucial surface parameters of initial soil liquid water content and total water content.The atmospheric control factors transitioned to precipitation and air temperature for soil moisture,especially at the shallow layer(5 cm).Meanwhile,the more influential surface parameters were root distribution and stomatal conductance in the warm season and initial soil liquid water content and total water content in the cold season.This work contributes to the research on the land surface processes over the alpine wetland and is helpful to wetland protection.展开更多
Area-preserving parameterization is now widely applied,such as for remeshing and medical image processing.We propose an efficient and stable approach to compute area-preserving parameterization on simply connected ope...Area-preserving parameterization is now widely applied,such as for remeshing and medical image processing.We propose an efficient and stable approach to compute area-preserving parameterization on simply connected open surfaces.From an initial parameterization,we construct an objective function of energy.This consists of an area distortion measure and a new regularization,termed as the Tutte regularization,combined into an optimization problem with sliding boundary constraints.The original area-preserving problem is decomposed into a series of subproblems to linearize the boundary constraints.We design an iteration framework based on the augmented Lagrange method to solve each linear constrained subproblem.Our method generates a high-quality parameterization with area-preserving on facets.The experimental results demonstrate the efficacy of the designed framework and the Tutte regularization for achieving a fine parameterization.展开更多
Remote measurements of Earth’s surface from ground, airborne, and spaceborne instruments show that its albedo is highly variable and is sensitive to solar zenith angle(SZA) and atmospheric opacity. Using a validate...Remote measurements of Earth’s surface from ground, airborne, and spaceborne instruments show that its albedo is highly variable and is sensitive to solar zenith angle(SZA) and atmospheric opacity. Using a validated radiative transfer calculating toolbox, DISORT and a bidirectional reflectance distribution function library, AMBRALS, a land surface albedo(LSA) lookup table(LUT) is produced with respect to SZA and aerosol optical depth. With the LUT, spectral and broadband LSA can be obtained at any given illumination geometries and atmospheric conditions. It provides a fast and accurate way to simulate surface reflectance over large temporal and spatial scales for climate study.展开更多
The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection sim...The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.展开更多
By analyzing the structure of the objective function based on error sum of squares and the information provided by the objective function, the essential problems in the current parameter estimation methods are summari...By analyzing the structure of the objective function based on error sum of squares and the information provided by the objective function, the essential problems in the current parameter estimation methods are summarized: (1) the information extracted from the objective function based on error sum of squares is unreasonable or even wrong for parameter estimation; and (2) the surface of the objective function based on error sum of squares is more complex than that of the parameter function, which indicates that the optimal parameter values should be searched on the surface of the parameter function instead of the objective function. This paper proposes the concept of sample intersection and demonstrates the uniqueness theorem of intersection point (namely the uniqueness of optimal parameter values). According to the characteristics of parameter function surface and Taylor series expansion, a parameter estimation method based on the sample intersection information extracted from parameter function surface (PFS method) was constructed. The results of theoretical analysis and practical application show that the proposed PFS method can avoid the problems in the current automatic parameter calibration, and has fast convergence rate and good performance in parameter calibration.展开更多
In this paper,an interactive model between land surface physical process and atmosphere boundary layer is established,and is used to simulate the features of soil environmental physics, surface heat fluxes,evaporation...In this paper,an interactive model between land surface physical process and atmosphere boundary layer is established,and is used to simulate the features of soil environmental physics, surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures of atmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged in primary physics parameters.The results show that this model can obtain reasonable simulation for diurnal variations of heat balance,soil volumetric water content,resistance of vegetation evaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulent momentum,potential temperature,and specific humidity.The model developed can be used to study the interaction between land surface processes and atmospheric boundary layer in city regions,and can also be used in the simulation of regional climate incorporating a mesoscale model.展开更多
A simple CFD tool, coupled to a discrete surface representation and a gradient based optimization procedure, is applied to the design of optimal hull forms and optimal arrangement of hulls for a wave cancellation ...A simple CFD tool, coupled to a discrete surface representation and a gradient based optimization procedure, is applied to the design of optimal hull forms and optimal arrangement of hulls for a wave cancellation multihull ship. The CFD tool, which is used to estimate the wave drag, is based on the zeroth order slender ship approximation. The hu ll surface is represented by a triangulation, and almost every grid point on the surface can be used as a design variable. A smooth surface is obtained via a si mplified pseudo shell problem. The optimal design process consists of two steps . The optimal center and outer hull forms are determined independently in the fi rst step, where each hull forms are determined independently in the first step, where each hull keeps the same displacement as the original design while the wav e drag is minimized. The optimal outer hull arrangement is determined in the se cond step for the optimal center and outer hull forms obtained in the first step . Results indicate that the new design can achieve a large wave drag reduction i n comparison to the original design configuration.展开更多
The multi-source data fusion methods are rarely involved in VNIR and thermal infrared remote sensing at present. Therefore, the potential advantages of the two kinds of data have not yet been adequately tapped, which ...The multi-source data fusion methods are rarely involved in VNIR and thermal infrared remote sensing at present. Therefore, the potential advantages of the two kinds of data have not yet been adequately tapped, which results in low calculation precision of parameters related with land surface temperature. A new fusion method is put forward where the characteristics of the high spatial resolution of VNIR (visible and near infrared) data and the high temporal resolution of thermal infrared data are fully explored in this paper. Non-linear fusion is implemented to obtain the land surface temperature in high spatial resolution and the high temporal resolution between the land surface parameters estimated from VNIR data and the thermal infrared data by means of GA-SOFM (genetic algorithms & self-organizing feature maps)-ANN (artificial neural net-work). Finally, the method is verified by ASTER satellite data. The result shows that the method is simple and convenient and can rapidly capture land surface temperature distribution of higher resolution with high precision.展开更多
基金financially supported by Civil Aircraft Special Project(Grant No.MJZ-2017-D-32(Y81H061A41)).
文摘High-fidelity aerodynamic optimization of compressors is afflicted by the"curse of dimensionality",which limits its engineering applications.This paper proposes a new multi-degrees-of-freedom(MDOF)surface parameterization method that combines the characteristics of conventional surface parameterization methods,low-dimensionality and surface smoothness,with the advantages of design flexibility and ease of construction.The proposed method is applied to the high-fidelity aerodynamic optimization of Rotor37.An optimized solution is obtained within 111 h by combining a phased optimization strategy based on the idea of modal optimization.To explore a better way of setting the control variables of the blade body,two methods of varying the control points of the suction and pressure surfaces,independent change and synchronous change,are compared.Synchronous change has better flexibility,and under the condition of satisfying the constraints,it increases the efficiency at the design point by 2.2%and the surge margin by 0.5%.This demonstrates the effectiveness of the proposed method in the high-fidelity aerodynamic optimization of compressors.It also provides technical support to solve the"curse of dimensionality"problem.
基金primarily supported by the National Fundamental Research 973 Program of China(Grant Nos.2015CB452801 and 2013CB430100)the National Natural Science Foundation of China(Grant No.41105035)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.20620140054 and 20620140347)supported by NOAA’s Hurricane Forecast and Improvement Project(HFIP),Grant Nos.NA14NWS4680028 and NASA Grant NNX14AM69G
文摘The effects of surface flux parameterizations on tropical cyclone(TC) intensity and structure are investigated using the Advanced Research Weather Research and Forecasting(WRF-ARW) modeling system with high-resolution simulations of Typhoon Morakot(2009).Numerical experiments are designed to simulate Typhoon Morakot(2009) with different formulations of surface exchange coefficients for enthalpy(C_K) and momentum(C_D) transfers,including those from recent observational studies based on in situ aircraft data collected in Atlantic hurricanes.The results show that the simulated intensity and structure are sensitive to C_K and C_D,but the simulated track is not.Consistent with previous studies,the simulated storm intensity is found to be more sensitive to the ratio of C_K/C_D than to C_K or C_D alone.The pressure-wind relationship is also found to be influenced by the exchange coefficients,consistent with recent numerical studies.This paper emphasizes the importance of C_D and C_K on TC structure simulations.The results suggest that C_D and C_K have a large impact on surface wind and flux distributions,boundary layer heights,the warm core,and precipitation.Compared to available observations,the experiment with observed C_D and C_K generally simulated better intensity and structure than the other experiments,especially over the ocean.The reasons for the structural differences among the experiments with different C_D and C_K setups are discussed in the context of TC dynamics and thermodynamics.
基金This work was supported by the National Natural Science Foundation of China(No.10025420,and No.90206009).
文摘The investigation of influence of surface effects on the energy spectra of elect rons is essential for comprehensive understanding of electron-solid interactions as well as quantitative analysis. The accuracy of the analysis depends on the m odels for elastic and inelastic interactions. Electrons impinging on a solid or escaping from it suffer losses in the surface layer. The energy loss spectra the refore have contributions from surface excitations. The role of surface excitati ons is characterized by surface excitation parameter (SEP), which indicates the number of surface plasmons created by an electron crossing the surface. The imag inary part of complex self-energy of an electron is related to the energy loss c ross section. SEP is numerically computed using self-energy formalism and compar ed with the results as described and calculated by different workers.
基金This work was supported by the National Natural Science Foundation of China (No.11274288 and No.11574289). We thank the Supercomputing Center of USTC for support in performing parallel computations.
文摘Electron inelastic mean free path (IMFP) is an important parameter for surface chemical quantification by surface electron spectroscopy techniques. It can be obtained from analysis of elastic peak electron spectroscopy (EPES) spectra measured on samples and a Monte Carlo simulation method. To obtain IMFP parameters with high accuracy, the surface excitation effect on the measured EPES spectra has to be quantified as a surface excitation parameter (SEP), which can be calculated via a dielectric response theory. However, such calculated SEP does not include influence of elastic scattering of electrons inside samples during their incidence and emission processes, which should not be neglected simply in determining IMFP by an EPES method. In this work a Monte Carlo simulation method is employed to determine surface excitation parameter by taking account of the elastic scattering effect. The simulated SEPs for different primary energies are found to be in good agreement with the experiments particularly for larger incident or emission angles above 60° where the elastic scattering effect plays a more important role than those in smaller incident or emission angles. Based on these new SEPs, the IMFP measurement by EPES technique can provide more accurate data.
文摘Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- tion methodology and simultaneously a performance evaluation technique based on drill cuttings produced and drilling rate achieved. In all 28 blast drilled through were investigated. The drilling was accomplished by 5 different drill machines of Ingersoll-Rand and Revathi working in coal mines of Sonepur Bazari (SECL) and Block-II (BCCL). The drills are Rotary and Rotary Percussive type using tri- cone rock roller bits. Drill cuttings were collected and sieve analysis was done in the laboratory. Using Rosin Ramler Diagram, coarseness index (CI), mean chip size (d), specific-st trace area (SSA) and charac- teristic particle size distribution curves for all the holes drilled were plotted. The predictor equation for drill penetration rate established through multiple regressions was found to have a very good correlation with an index of determination of 0.85. A comparative analysis of particle size distribution curves was used to evaluate the drill efficiency. The suggested approach utilises the area under the curve, after the point of trend reversal and brittleness ratio of the respective bench to arrive at drill energy utilization index (DEUI), for mapping of drill machine to bench, The developed DEU1 can aid in selecting or mapping a right machine to right bench for achieving higher penetration rate and utilizations.
基金supported by the National Natural Science Foundation of China(Grant Nos.42005075,41975130)Natural Science Foundation of Gansu Province(Grant No.21JR7RA047)+1 种基金Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province(Grant No.PAEKL-2022-K03)the State Key Laboratory of Cryospheric Science(Grant No.SKLCS-ZZ-2023,SKLCS-ZZ-2022).
文摘Alpine wetland is one of the typical underlying surfaces on the Qinghai–Tibet Plateau.It plays a crucial role in runoff regulation.Investigations on the mechanisms of water and heat exchanges are necessary to understand the land surface processes over the alpine wetland.This study explores the characteristics of hydro-meteorological factors with in situ observations and uses the Community Land Model 5 to identify the main factors controlling water and heat exchanges.Latent heat flux and thermal roughness length were found to be greater in the warm season(June–August)than in the cold season(December–February),with a frozen depth of 20–40 cm over the alpine wetland.The transfers of heat fluxes were mainly controlled by longwave radiation and air temperature and affected by root distribution.Air pressure and stomatal conductance were also important to latent heat flux,and soil solid water content was important to sensible heat flux.Soil temperature was dominated by longwave radiation and air temperature,with crucial surface parameters of initial soil liquid water content and total water content.The atmospheric control factors transitioned to precipitation and air temperature for soil moisture,especially at the shallow layer(5 cm).Meanwhile,the more influential surface parameters were root distribution and stomatal conductance in the warm season and initial soil liquid water content and total water content in the cold season.This work contributes to the research on the land surface processes over the alpine wetland and is helpful to wetland protection.
基金supported by Anhui Center for Applied Mathematics,the NSF of China (No.11871447)the special project of strategic leading science and technology of CAS (No.XDC08010100)the National Key Research and Development Program of MOST of China (No.2018AAA0101001).
文摘Area-preserving parameterization is now widely applied,such as for remeshing and medical image processing.We propose an efficient and stable approach to compute area-preserving parameterization on simply connected open surfaces.From an initial parameterization,we construct an objective function of energy.This consists of an area distortion measure and a new regularization,termed as the Tutte regularization,combined into an optimization problem with sliding boundary constraints.The original area-preserving problem is decomposed into a series of subproblems to linearize the boundary constraints.We design an iteration framework based on the augmented Lagrange method to solve each linear constrained subproblem.Our method generates a high-quality parameterization with area-preserving on facets.The experimental results demonstrate the efficacy of the designed framework and the Tutte regularization for achieving a fine parameterization.
基金supported by the National Natural Science Foundation of China(No.41305019)the Anhui Provincial Natural Science Foundation(No.1308085QD70)
文摘Remote measurements of Earth’s surface from ground, airborne, and spaceborne instruments show that its albedo is highly variable and is sensitive to solar zenith angle(SZA) and atmospheric opacity. Using a validated radiative transfer calculating toolbox, DISORT and a bidirectional reflectance distribution function library, AMBRALS, a land surface albedo(LSA) lookup table(LUT) is produced with respect to SZA and aerosol optical depth. With the LUT, spectral and broadband LSA can be obtained at any given illumination geometries and atmospheric conditions. It provides a fast and accurate way to simulate surface reflectance over large temporal and spatial scales for climate study.
基金jointly supported by the National Natural Science Foundation of China under Grants 40905045 and 40821092the Open Project for LASG-IAP-CAS+2 种基金the Study Project of Jiangsu Provincial 333 High-level Talents Cultivation Programmethe Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education under Grant KLME05001the Project Funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.
基金supported by the National Natural Science Foundation of China (Grant No. 51279057)the Major Program of National Natural Science Foundation of China (Grant Nos. 51190090 and 51190091)+1 种基金the Ph.D. Programs Foundation of Ministry of Education of China (Grant No.20120094120018)the Fundamental Research Funds for the Central Universities of China (Grant No. 2012B00214)
文摘By analyzing the structure of the objective function based on error sum of squares and the information provided by the objective function, the essential problems in the current parameter estimation methods are summarized: (1) the information extracted from the objective function based on error sum of squares is unreasonable or even wrong for parameter estimation; and (2) the surface of the objective function based on error sum of squares is more complex than that of the parameter function, which indicates that the optimal parameter values should be searched on the surface of the parameter function instead of the objective function. This paper proposes the concept of sample intersection and demonstrates the uniqueness theorem of intersection point (namely the uniqueness of optimal parameter values). According to the characteristics of parameter function surface and Taylor series expansion, a parameter estimation method based on the sample intersection information extracted from parameter function surface (PFS method) was constructed. The results of theoretical analysis and practical application show that the proposed PFS method can avoid the problems in the current automatic parameter calibration, and has fast convergence rate and good performance in parameter calibration.
基金This study is jointly supported by the National Natural Science Foundation of China under the Program 49575251 and by LAPC.
文摘In this paper,an interactive model between land surface physical process and atmosphere boundary layer is established,and is used to simulate the features of soil environmental physics, surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures of atmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged in primary physics parameters.The results show that this model can obtain reasonable simulation for diurnal variations of heat balance,soil volumetric water content,resistance of vegetation evaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulent momentum,potential temperature,and specific humidity.The model developed can be used to study the interaction between land surface processes and atmospheric boundary layer in city regions,and can also be used in the simulation of regional climate incorporating a mesoscale model.
基金This work was partially funded by AFOSR (Dr. Leonidas Sakell technical monitor) by NRL (Dr. William Sandberg technical monit
文摘A simple CFD tool, coupled to a discrete surface representation and a gradient based optimization procedure, is applied to the design of optimal hull forms and optimal arrangement of hulls for a wave cancellation multihull ship. The CFD tool, which is used to estimate the wave drag, is based on the zeroth order slender ship approximation. The hu ll surface is represented by a triangulation, and almost every grid point on the surface can be used as a design variable. A smooth surface is obtained via a si mplified pseudo shell problem. The optimal design process consists of two steps . The optimal center and outer hull forms are determined independently in the fi rst step, where each hull forms are determined independently in the first step, where each hull keeps the same displacement as the original design while the wav e drag is minimized. The optimal outer hull arrangement is determined in the se cond step for the optimal center and outer hull forms obtained in the first step . Results indicate that the new design can achieve a large wave drag reduction i n comparison to the original design configuration.
基金Supported by the Key Laboratory of Mapping from Space of State Bureau of Surveying and Mapping(No.200815), the Natural Science Foundation of China (NSFC 40371087, 40701119), the Major State Basic Research Development Program of China (973 Program) (No. 2007CB714401), the National High Technology Research and Development Program of China (863 Program) (No. 2007AA10Z201 ).
文摘The multi-source data fusion methods are rarely involved in VNIR and thermal infrared remote sensing at present. Therefore, the potential advantages of the two kinds of data have not yet been adequately tapped, which results in low calculation precision of parameters related with land surface temperature. A new fusion method is put forward where the characteristics of the high spatial resolution of VNIR (visible and near infrared) data and the high temporal resolution of thermal infrared data are fully explored in this paper. Non-linear fusion is implemented to obtain the land surface temperature in high spatial resolution and the high temporal resolution between the land surface parameters estimated from VNIR data and the thermal infrared data by means of GA-SOFM (genetic algorithms & self-organizing feature maps)-ANN (artificial neural net-work). Finally, the method is verified by ASTER satellite data. The result shows that the method is simple and convenient and can rapidly capture land surface temperature distribution of higher resolution with high precision.