期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A REGULARIZED CONJUGATE GRADIENT METHOD FOR SYMMETRIC POSITIVE DEFINITE SYSTEM OF LINEAR EQUATIONS 被引量:13
1
作者 Zhong-zhi Bai Shao-liang Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2002年第4期437-448,共12页
A class of regularized conjugate gradient methods is presented for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned symmetric positive definite matrix. The conv... A class of regularized conjugate gradient methods is presented for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned symmetric positive definite matrix. The convergence properties of these methods are discussed in depth, and the best possible choices of the parameters involved in the new methods are investigated in detail. Numerical computations show that the new methods are more efficient and robust than both classical relaxation methods and classical conjugate direction methods. 展开更多
关键词 conjugate gradient method symmetric positive definite matrix REGULARIZATION ill-conditioned linear system
全文增补中
ON THE APPROXIMATE COMPUTATION OF EXTREME EIGENVALUES AND THE CONDITION NUMBER OF NONSINGULAR MATRICES
2
作者 雷光耀 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第2期199-204,共6页
From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of t... From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of the conjugate gradient. The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B. The approximation of extreme eigenvalues of A can be obtained as a 'by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient. If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on AT A. Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices. 展开更多
关键词 symmetric positive definite matrix conjugate gradient EIGENVALUES condition number
下载PDF
A CLASS OF NEW PARALLEL HYBRID ALGEBRAIC MULTILEVEL ITERATIONS 被引量:1
3
作者 Zhong-zhi Bai (LSEC ICMSEC, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, China) 《Journal of Computational Mathematics》 SCIE EI CSCD 2001年第6期651-672,共22页
Presents preconditioning matrices having parallel computing function for the coefficient matrix and a class of parallel hybrid algebraic multilevel iteration methods for solving linear equations. Solution to elliptic ... Presents preconditioning matrices having parallel computing function for the coefficient matrix and a class of parallel hybrid algebraic multilevel iteration methods for solving linear equations. Solution to elliptic boundary value problem; Discussion on symmetric positive definite matrix; Computational complexities. 展开更多
关键词 elliptic boundary value problem system of linear equations symmetric positive definite matrix multilevel iteration parallel method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部