The use of engineering procurement construction (EPC) mode is currently a trend in hydropower engineering construction. The clarification of the internal relationship between hydropower EPC projects and the realizatio...The use of engineering procurement construction (EPC) mode is currently a trend in hydropower engineering construction. The clarification of the internal relationship between hydropower EPC projects and the realization of synergy has great significance in improving management efficiency and implementation effect. In this work, a three-dimensional system and a system model of hydropower EPC project management synergy are constructed. The mechanism and factors that influence the degree of management synergy are analyzed on the basis of management synergy theory. Furthermore, the evaluation index system and the degree of synergy model are established, and grey relational analysis is utilized to identify the key factors that affect the synergy degree. Thus, this study aims to facilitate the hydropower EPC project management synergy, provide a quantitative method for synergy degree evaluation, and propose corresponding promotion strategies. Results show that the order degree of each subsystem presents a steady upward trend. Specifically, the order degree of the subsystem at the trial operation stage is low, which is the major restriction on the further improvement of the synergy degree of EPC project management. The key factors in improving the synergy level of hydropower EPC project management are mainly concentrated in the information and organization synergy subsystems, including the construction degree of information platform, the performance of functions, the timeliness of information transfer, and the functions of the information platform.展开更多
It is necessary to identify a gaseous pollutant source rapidly so that prompt actions can be taken, but this is one of the difficulties in the inverse problem areas. In this paper, an approach to identifying a sudden ...It is necessary to identify a gaseous pollutant source rapidly so that prompt actions can be taken, but this is one of the difficulties in the inverse problem areas. In this paper, an approach to identifying a sudden continuous emission pollutant source based on single sensor information is developed to locate a source in an enclosed space with a steady velocity field. Because the gravity has a very important influence on the gaseous pollutant transport and the source identification, its influence is analyzed theoretically and a conclusion is drawn that the velocity of fluid is a key factor to effectively help weaken the gravitational influence. Further studies for a given 2-D case by using the computational fluid dynamics (CFD) method show that when the velocity of inlet is less than one certain value, the influence of gravity on the pollutant transport is very significant, which will change the velocity field obviously. In order to quantitatively judge the practical applicability of identification approach, a synergy degree of the velocity fields before and after a source appearing is proposed as a condition for considering the influence of gravity. An experimental device simulating pollutant transmission was set up and some experiments were conducted to verify the practical application of the above studies in the actual gravitational environment. The results show that the proposed approach can successfully locate the sudden constant source when the experimental situations meet the identified conditions.展开更多
Aiming at the widespread issues of synergistic performance management, a conceptual model of synergistic performance management system is built. The order parameter of system synergy and the main factors, as well as t...Aiming at the widespread issues of synergistic performance management, a conceptual model of synergistic performance management system is built. The order parameter of system synergy and the main factors, as well as the degree of synergy and the concept of synergistic effect are proposed. An associated structural model of synergistic performance management system is established based on the method of structural equation modeling.展开更多
基金This study has been partly supported by the National Natural Science Foundation of China(Grant No.71774132)the Major Program of Power China(Grant No.DJ-ZDZX2016-01-01)Shaanxi Water Conservancy Science and Technology Project(2018SLKJ-19).
文摘The use of engineering procurement construction (EPC) mode is currently a trend in hydropower engineering construction. The clarification of the internal relationship between hydropower EPC projects and the realization of synergy has great significance in improving management efficiency and implementation effect. In this work, a three-dimensional system and a system model of hydropower EPC project management synergy are constructed. The mechanism and factors that influence the degree of management synergy are analyzed on the basis of management synergy theory. Furthermore, the evaluation index system and the degree of synergy model are established, and grey relational analysis is utilized to identify the key factors that affect the synergy degree. Thus, this study aims to facilitate the hydropower EPC project management synergy, provide a quantitative method for synergy degree evaluation, and propose corresponding promotion strategies. Results show that the order degree of each subsystem presents a steady upward trend. Specifically, the order degree of the subsystem at the trial operation stage is low, which is the major restriction on the further improvement of the synergy degree of EPC project management. The key factors in improving the synergy level of hydropower EPC project management are mainly concentrated in the information and organization synergy subsystems, including the construction degree of information platform, the performance of functions, the timeliness of information transfer, and the functions of the information platform.
基金supported by the National Natural Science Foundation of China (No. 50808007)
文摘It is necessary to identify a gaseous pollutant source rapidly so that prompt actions can be taken, but this is one of the difficulties in the inverse problem areas. In this paper, an approach to identifying a sudden continuous emission pollutant source based on single sensor information is developed to locate a source in an enclosed space with a steady velocity field. Because the gravity has a very important influence on the gaseous pollutant transport and the source identification, its influence is analyzed theoretically and a conclusion is drawn that the velocity of fluid is a key factor to effectively help weaken the gravitational influence. Further studies for a given 2-D case by using the computational fluid dynamics (CFD) method show that when the velocity of inlet is less than one certain value, the influence of gravity on the pollutant transport is very significant, which will change the velocity field obviously. In order to quantitatively judge the practical applicability of identification approach, a synergy degree of the velocity fields before and after a source appearing is proposed as a condition for considering the influence of gravity. An experimental device simulating pollutant transmission was set up and some experiments were conducted to verify the practical application of the above studies in the actual gravitational environment. The results show that the proposed approach can successfully locate the sudden constant source when the experimental situations meet the identified conditions.
文摘Aiming at the widespread issues of synergistic performance management, a conceptual model of synergistic performance management system is built. The order parameter of system synergy and the main factors, as well as the degree of synergy and the concept of synergistic effect are proposed. An associated structural model of synergistic performance management system is established based on the method of structural equation modeling.