Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consens...This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.展开更多
Diamond-like carbon (DLC) films have recently been pursued as the protection of MEMS against their friction and wear.Plasma enhanced chemical vapor deposition (PECVD) technique is very attractive to prepare DLC coatin...Diamond-like carbon (DLC) films have recently been pursued as the protection of MEMS against their friction and wear.Plasma enhanced chemical vapor deposition (PECVD) technique is very attractive to prepare DLC coating for MEMS.This paper describes the preparation of DLC films using twinned electron cyclotron resonance (ECR) microwave PECVD process.Raman spectra confirmed the DLC characteristics of the films.Fourier-transform infrared (FT-IR)characterization indicates the carbon is bonded in the form sp~3 and sp~2 with hydrogen participating in bonding.The surface roughness of the films is as low as approximately (0.093)nm measured with an atomic force microscope.A CERT microtribometer system is employed to obtain information about the scratch resistance,friction properties,and sliding wear resistance of the films.The results show the deposited DLC films have low friction and good scratch/wear resistance properties.展开更多
We develop a new integrated navigation system, which integrates multi-constellations GNSS precise point positioning (PPP), including GPS, GLONASS and Galileo, with low-cost micro-electro-mechanical sensor (MEMS) inert...We develop a new integrated navigation system, which integrates multi-constellations GNSS precise point positioning (PPP), including GPS, GLONASS and Galileo, with low-cost micro-electro-mechanical sensor (MEMS) inertial system, for precise positioning applications. To integrate GNSS and the MEMS-based inertial system, the process and measurement models are developed. Tightly coupled mechanism is adopted, which is carried out in the GNSS raw measurements domain. Both un-differenced and between-satellite single-difference (BSSD) ionosphere-free linear combinations of pseudorange and carrier phase GNSS measurements are processed. Rigorous models are employed to correct GNSS errors and biases. The GNSS inter-system biases are considered as additional unknowns in the integrated error state vector. The developed stochastic model for inertial sensors errors and biases are defined based on first order Gaussian Markov process. Extended Kalman filter is developed to integrate GNSS and inertial measurements and estimate inertial measurements biases and errors. Two field experiments are executed, which represent different real-world scenarios in land-based navigation. The data are processed by using our developed Ryerson PPP GNSS/MEMS software. The results indicate that the proposed integrated system achieves decimeter to centimeter level positioning accuracy when the measurement updates from GNSS are available. During complete GNSS outages the developed integrated system continues to achieve decimeter level accuracy for up to 30 seconds while it achieves meter-level accuracy when a 60-second outage is introduced.展开更多
The mechanical response of shock-loaded microelectromechanical systems (MEMS) is simulated to formulate guidelines for the design of dynamically reliable MEMS. MEMS are modeled as microstructures supported on elastic ...The mechanical response of shock-loaded microelectromechanical systems (MEMS) is simulated to formulate guidelines for the design of dynamically reliable MEMS. MEMS are modeled as microstructures supported on elastic substrates, and the shock loads are represented as pulses of acceleration applied by the package on the substrate over a finite time duration. For typical MEMS and shock loads, the response of the substrate is closely approximated by rigid-body motion. Results indicate that modeling the shock force as a quasi-static force for MEMS with low-natural frequencies may lead to erroneous results. A criterion is obtained to distinguish between the dynamic and quasi-static responses of the MEMS.展开更多
香港投资控股公司(GAE)日前宣布取得全球最大的纯MEMS代T厂Silex Microsystems的98%股份。该交易已经于近日完成,双方并未透露具体交易金额。Silex Microsystems创始人兼CEO Edvard Kalvesten则仍然保留其2%股份,交易后Silex的组...香港投资控股公司(GAE)日前宣布取得全球最大的纯MEMS代T厂Silex Microsystems的98%股份。该交易已经于近日完成,双方并未透露具体交易金额。Silex Microsystems创始人兼CEO Edvard Kalvesten则仍然保留其2%股份,交易后Silex的组织架构和业务运营保持不变,原有管理团队仍按既有安排履行职责。展开更多
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金supported in part by the National Natural Science Foundation of China (NSFC)(61703086, 61773106)the IAPI Fundamental Research Funds (2018ZCX27)
文摘This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.
文摘Diamond-like carbon (DLC) films have recently been pursued as the protection of MEMS against their friction and wear.Plasma enhanced chemical vapor deposition (PECVD) technique is very attractive to prepare DLC coating for MEMS.This paper describes the preparation of DLC films using twinned electron cyclotron resonance (ECR) microwave PECVD process.Raman spectra confirmed the DLC characteristics of the films.Fourier-transform infrared (FT-IR)characterization indicates the carbon is bonded in the form sp~3 and sp~2 with hydrogen participating in bonding.The surface roughness of the films is as low as approximately (0.093)nm measured with an atomic force microscope.A CERT microtribometer system is employed to obtain information about the scratch resistance,friction properties,and sliding wear resistance of the films.The results show the deposited DLC films have low friction and good scratch/wear resistance properties.
文摘We develop a new integrated navigation system, which integrates multi-constellations GNSS precise point positioning (PPP), including GPS, GLONASS and Galileo, with low-cost micro-electro-mechanical sensor (MEMS) inertial system, for precise positioning applications. To integrate GNSS and the MEMS-based inertial system, the process and measurement models are developed. Tightly coupled mechanism is adopted, which is carried out in the GNSS raw measurements domain. Both un-differenced and between-satellite single-difference (BSSD) ionosphere-free linear combinations of pseudorange and carrier phase GNSS measurements are processed. Rigorous models are employed to correct GNSS errors and biases. The GNSS inter-system biases are considered as additional unknowns in the integrated error state vector. The developed stochastic model for inertial sensors errors and biases are defined based on first order Gaussian Markov process. Extended Kalman filter is developed to integrate GNSS and inertial measurements and estimate inertial measurements biases and errors. Two field experiments are executed, which represent different real-world scenarios in land-based navigation. The data are processed by using our developed Ryerson PPP GNSS/MEMS software. The results indicate that the proposed integrated system achieves decimeter to centimeter level positioning accuracy when the measurement updates from GNSS are available. During complete GNSS outages the developed integrated system continues to achieve decimeter level accuracy for up to 30 seconds while it achieves meter-level accuracy when a 60-second outage is introduced.
文摘The mechanical response of shock-loaded microelectromechanical systems (MEMS) is simulated to formulate guidelines for the design of dynamically reliable MEMS. MEMS are modeled as microstructures supported on elastic substrates, and the shock loads are represented as pulses of acceleration applied by the package on the substrate over a finite time duration. For typical MEMS and shock loads, the response of the substrate is closely approximated by rigid-body motion. Results indicate that modeling the shock force as a quasi-static force for MEMS with low-natural frequencies may lead to erroneous results. A criterion is obtained to distinguish between the dynamic and quasi-static responses of the MEMS.
文摘香港投资控股公司(GAE)日前宣布取得全球最大的纯MEMS代T厂Silex Microsystems的98%股份。该交易已经于近日完成,双方并未透露具体交易金额。Silex Microsystems创始人兼CEO Edvard Kalvesten则仍然保留其2%股份,交易后Silex的组织架构和业务运营保持不变,原有管理团队仍按既有安排履行职责。