Owing to the rapid increase in the interchange of text information through internet networks,the reliability and security of digital content are becoming a major research problem.Tampering detection,Content authentica...Owing to the rapid increase in the interchange of text information through internet networks,the reliability and security of digital content are becoming a major research problem.Tampering detection,Content authentication,and integrity verification of digital content interchanged through the Internet were utilized to solve a major concern in information and communication technologies.The authors’difficulties were tampering detection,authentication,and integrity verification of the digital contents.This study develops an Automated Data Mining based Digital Text Document Watermarking for Tampering Attack Detection(ADMDTW-TAD)via the Internet.The DM concept is exploited in the presented ADMDTW-TAD technique to identify the document’s appropriate characteristics to embed larger watermark information.The presented secure watermarking scheme intends to transmit digital text documents over the Internet securely.Once the watermark is embedded with no damage to the original document,it is then shared with the destination.The watermark extraction process is performed to get the original document securely.The experimental validation of the ADMDTW-TAD technique is carried out under varying levels of attack volumes,and the outcomes were inspected in terms of different measures.The simulation values indicated that the ADMDTW-TAD technique improved performance over other models.展开更多
In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information ...In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information of the original image is a challenging problem since unknown diverse manipulations may have different characteristics and so do various formats of images.Our principle is that image processing,no matter how complex,may affect image quality,so image quality metrics can be used to distinguish tampered images.In particular,based on the alteration of image quality in modified blocks,the proposed method can locate the tampered areas.Referring to four types of effective no-reference image quality metrics,we obtain 13 features to present an image.The experimental results show that the proposed method is very promising on detecting image tampering and locating the locally tampered areas especially in realistic scenarios.展开更多
In this paper,a hybrid intelligent text zero-watermarking approach has been proposed by integrating text zero-watermarking and hidden Markov model as natural language processing techniques for the content authenticati...In this paper,a hybrid intelligent text zero-watermarking approach has been proposed by integrating text zero-watermarking and hidden Markov model as natural language processing techniques for the content authentication and tampering detection of Arabic text contents.The proposed approach known as Second order of Alphanumeric Mechanism of Markov model and Zero-Watermarking Approach(SAMMZWA).Second level order of alphanumeric mechanism based on hidden Markov model is integrated with text zero-watermarking techniques to improve the overall performance and tampering detection accuracy of the proposed approach.The SAMMZWA approach embeds and detects the watermark logically without altering the original text document.The extracted features are used as a watermark information and integrated with digital zero-watermarking techniques.To detect eventual tampering,SAMMZWA has been implemented and validated with attacked Arabic text.Experiments were performed on four datasets of varying lengths under multiple random locations of insertion,reorder and deletion attacks.The experimental results show that our method is more sensitive for all kinds of tampering attacks with high level accuracy of tampering detection than compared methods.展开更多
Due to the rapid increase in the exchange of text information via internet networks,the security and the reliability of digital content have become a major research issue.The main challenges faced by researchers are a...Due to the rapid increase in the exchange of text information via internet networks,the security and the reliability of digital content have become a major research issue.The main challenges faced by researchers are authentication,integrity verication,and tampering detection of the digital contents.In this paper,text zero-watermarking and text feature-based approach is proposed to improve the tampering detection accuracy of English text contents.The proposed approach embeds and detects the watermark logically without altering the original English text document.Based on hidden Markov model(HMM),the fourth level order of the word mechanism is used to analyze the contents of the given English text to nd the interrelationship between the contexts.The extracted features are used as watermark information and integrated with digital zero-watermarking techniques.To detect eventual tampering,the proposed approach has been implemented and validated with attacked English text.Experiments were performed using four standard datasets of varying lengths under multiple random locations of insertion,reorder,and deletion attacks.The experimental and simulation results prove the tampering detection accuracy of our method against all kinds of tampering attacks.Comparison results show that our proposed approach outperforms all the other baseline approaches in terms of tampering detection accuracy.展开更多
Themost common digital media exchanged via the Internet is in text form.The Arabic language is considered one of themost sensitive languages of content modification due to the presence of diacritics that can cause a c...Themost common digital media exchanged via the Internet is in text form.The Arabic language is considered one of themost sensitive languages of content modification due to the presence of diacritics that can cause a change in the meaning.In this paper,an intelligent scheme is proposed for improving the reliability and security of the text exchanged via the Internet.The core mechanism of the proposed scheme depends on integrating the hidden Markov model and zero text watermarking techniques.The watermark key will be generated by utilizing the extracted features of the text analysis process using the third order and word level of the Markov model.The Embedding and detection processes of the proposed scheme will be performed logically without the effect of the original text.The proposed scheme is implemented using PHP with VS code IDE.The simulation results,using varying sizes of standard datasets,show that the proposed scheme can obtain high reliability and provide better accuracy of the common illegal tampering attacks.Comparison results with other baseline techniques show the added value of the proposed scheme.展开更多
Due to the rapid increase in the exchange of text information via internet networks,the security and authenticity of digital content have become a major research issue.The main challenges faced by researchers are how ...Due to the rapid increase in the exchange of text information via internet networks,the security and authenticity of digital content have become a major research issue.The main challenges faced by researchers are how to hide the information within the text to use it later for authentication and attacks tampering detection without effects on the meaning and size of the given digital text.In this paper,an efficient text-based watermarking method has been proposed for detecting the illegal tampering attacks on theArabic text transmitted online via an Internet network.Towards this purpose,the accuracy of tampering detection and watermark robustness has been improved of the proposed method as compared with the existing approaches.In the proposed method,both embedding and extracting of the watermark are logically implemented,which causes no change in the digital text.This is achieved by using the third level and alphanumeric strategy of the Markov model as a text analysis technique for analyzing the Arabic contents to obtain its features which are considered as the digital watermark.This digital watermark will be used later to detecting any tampering of illegal attack on the received Arabic text.An extensive set of experiments using four data sets of varying lengths proves the effectiveness of our approach in terms of detection accuracy,robustness,and effectiveness under multiple random locations of the common tampering attacks.展开更多
Tampering of biometric data has attracted a great deal of attention recently. Furthermore, there could be an intentional or accidental use of a particular biometric sample instead of another for a particular applicati...Tampering of biometric data has attracted a great deal of attention recently. Furthermore, there could be an intentional or accidental use of a particular biometric sample instead of another for a particular application. Therefore, there exists a need to propose a method to detect data tampering, as well as differentiate biometric samples in cases of intentional or accidental use for a different application. In this paper, fingerprint image tampering is studied. Furthermore, optically acquired fingerprints, synthetically generated fingerprints and contact-less acquired fingerprints are studied for separation purposes using the Benford’s law divergence metric. Benford’s law has shown in literature to be very effective in detecting tampering of natural images. In this paper, the Benford’s law features with support vector machine are proposed for the detection of malicious tampering of JPEG fingerprint images. This method is aimed at protecting against insider attackers and hackers. This proposed method detected tampering effectively, with Equal Error Rate (EER) of 2.08%. Again, the experimental results illustrate that, optically acquired fingerprints, synthetically generated fingerprints and contact-less acquired fingerprints can be separated by the proposed method effectively.展开更多
Blind forensics of JPEG image tampering as a kind of digital image blind forensics technology is gradually becoming a new research hotspot in the field of image security. Firstly, the main achievements of domestic and...Blind forensics of JPEG image tampering as a kind of digital image blind forensics technology is gradually becoming a new research hotspot in the field of image security. Firstly, the main achievements of domestic and foreign scholars in the blind forensic technology of JPEG image tampering were briefly described. Then, according to the different methods of tampering and detection, the current detection was divided into two types: double JPEG compression detection and block effect inconsistency detection. This paper summarized the existing methods of JPEG image blind forensics detection, and analyzed the two methods. Finally, the existing problems and future research trends were analyzed and prospected to provide further theoretical support for the research of JPEG image blind forensics technology.展开更多
With the development of wireless communication technology,cyber physical systems are applied in various fields such as industrial production and infrastructure,where lots of information exchange brings cyber security ...With the development of wireless communication technology,cyber physical systems are applied in various fields such as industrial production and infrastructure,where lots of information exchange brings cyber security threats to the systems.From the perspective of system identification with binary-valued observations,we study the optimal attack problem when the system is subject to both denial of service attacks and data tampering attacks.The packet loss rate and the data tampering rate caused by the attack is given,and the estimation error is derived.Then the optimal attack strategy to maximize the identification error with the least energy is described as a min–max optimization problem with constraints.The explicit expression of the optimal attack strategy is obtained.Simulation examples are presented to verify the effectiveness of the main conclusions.展开更多
In this paper,we investigate the defense problem against the joint attacks of denial-of-service attacks and data tampering attacks in the framework of system identification with binary-valued observations.By estimatin...In this paper,we investigate the defense problem against the joint attacks of denial-of-service attacks and data tampering attacks in the framework of system identification with binary-valued observations.By estimating the key parameters of the joint attack and compensating them in the identification algorithm,a compensation-oriented defense scheme is proposed.Then the identification algorithm of system parameter is designed and is further proved to be consistent.The asymptotic normality of the algorithm is obtained,and on this basis,we propose the optimal defense scheme.Furthermore,the implementation of the optimal defense scheme is discussed.Finally,a simulation example is presented to verify the effectiveness of the main results.展开更多
Many real world attacks often target the implementation of a cryptographic scheme,rather than the algorithm itself,and a system designer has to consider new models that can capture these attacks.For example,if the key...Many real world attacks often target the implementation of a cryptographic scheme,rather than the algorithm itself,and a system designer has to consider new models that can capture these attacks.For example,if the key can be tampered by physical attacks on the device,the security of the scheme becomes totally unclear.In this work,we investigate predicate encryption(PE),a powerful encryption primitive,in the setting of tampering attacks.First,we show that many existing frameworks to construct PE are vulnerable to tampering attacks.Then we present a new security notion to capture such attacks.Finally,we take Attrapadung’s framework in Eurocrypt’14 as an example to show how to"compile"these frameworks to tampering resilient ones.Moreover,our method is compatible with the original pair encoding schemes without introducing any redundancy.展开更多
Many real world attacks often target the implementation of a cryptographic scheme,rather than the algorithm itself,and a system designer has to consider new models that can capture these attacks.For example,if the key...Many real world attacks often target the implementation of a cryptographic scheme,rather than the algorithm itself,and a system designer has to consider new models that can capture these attacks.For example,if the key can be tampered by physical attacks on the device,the security of the scheme becomes totally unclear.In this work,we investigate predicate encryption(PE),a powerful encryption primitive,in the setting of tampering attacks.First,we show that many existing frameworks to construct PE are vulnerable to tampering attacks.Then we present a new security notion to capture such attacks.Finally,we take Attrapadung’s framework in Eurocrypt’14 as an example to show how to“compile"these frameworks to tampering resilient ones.Moreover,our method is compatible with the original pair encoding schemes without introducing any redundancy.展开更多
As image manipulation technology advances rapidly,the malicious use of image tampering has alarmingly escalated,posing a significant threat to social stability.In the realm of image tampering localization,accurately l...As image manipulation technology advances rapidly,the malicious use of image tampering has alarmingly escalated,posing a significant threat to social stability.In the realm of image tampering localization,accurately localizing limited samples,multiple types,and various sizes of regions remains a multitude of challenges.These issues impede the model’s universality and generalization capability and detrimentally affect its performance.To tackle these issues,we propose FL-MobileViT-an improved MobileViT model devised for image tampering localization.Our proposed model utilizes a dual-stream architecture that independently processes the RGB and noise domain,and captures richer traces of tampering through dual-stream integration.Meanwhile,the model incorporating the Focused Linear Attention mechanism within the lightweight network(MobileViT).This substitution significantly diminishes computational complexity and resolves homogeneity problems associated with traditional Transformer attention mechanisms,enhancing feature extraction diversity and improving the model’s localization performance.To comprehensively fuse the generated results from both feature extractors,we introduce the ASPP architecture for multi-scale feature fusion.This facilitates a more precise localization of tampered regions of various sizes.Furthermore,to bolster the model’s generalization ability,we adopt a contrastive learning method and devise a joint optimization training strategy that leverages fused features and captures the disparities in feature distribution in tampered images.This strategy enables the learning of contrastive loss at various stages of the feature extractor and employs it as an additional constraint condition in conjunction with cross-entropy loss.As a result,overfitting issues are effectively alleviated,and the differentiation between tampered and untampered regions is enhanced.Experimental evaluations on five benchmark datasets(IMD-20,CASIA,NIST-16,Columbia and Coverage)validate the effectiveness of our proposed model.The meticulously calibrated FL-MobileViT model consistently outperforms numerous existing general models regarding localization accuracy across diverse datasets,demonstrating superior adaptability.展开更多
In recent years,with the rapid development of deep learning technologies,some neural network models have been applied to generate fake media.DeepFakes,a deep learning based forgery technology,can tamper with the face ...In recent years,with the rapid development of deep learning technologies,some neural network models have been applied to generate fake media.DeepFakes,a deep learning based forgery technology,can tamper with the face easily and generate fake videos that are difficult to be distinguished by human eyes.The spread of face manipulation videos is very easy to bring fake information.Therefore,it is important to develop effective detection methods to verify the authenticity of the videos.Due to that it is still challenging for current forgery technologies to generate all facial details and the blending operations are used in the forgery process,the texture details of the fake face are insufficient.Therefore,in this paper,a new method is proposed to detect DeepFake videos.Firstly,the texture features are constructed,which are based on the gradient domain,standard deviation,gray level co-occurrence matrix and wavelet transform of the face region.Then,the features are processed by the feature selection method to form a discriminant feature vector,which is finally employed to SVM for classification at the frame level.The experimental results on the mainstream DeepFake datasets demonstrate that the proposed method can achieve ideal performance,proving the effectiveness of the proposed method for DeepFake videos detection.展开更多
With the popularization of high-performance electronic imaging equipment and the wide application of digital image editing software,the threshold of digital image editing becomes lower and lower.Thismakes it easy to t...With the popularization of high-performance electronic imaging equipment and the wide application of digital image editing software,the threshold of digital image editing becomes lower and lower.Thismakes it easy to trick the human visual system with professionally altered images.These tampered images have brought serious threats to many fields,including personal privacy,news communication,judicial evidence collection,information security and so on.Therefore,the security and reliability of digital information has been increasingly concerned by the international community.In this paper,digital image tamper detection methods are classified according to the clues that they rely on,detection methods based on image content and detection methods based on double JPEG compression traces.This paper analyzes and discusses the important algorithms in several classification methods,and summarizes the problems existing in various methods.Finally,this paper predicts the future development trend of tamper detection.展开更多
Text information is principally dependent on the natural languages.Therefore,improving security and reliability of text information exchanged via internet network has become the most difficult challenge that researche...Text information is principally dependent on the natural languages.Therefore,improving security and reliability of text information exchanged via internet network has become the most difficult challenge that researchers encounter.Content authentication and tampering detection of digital contents have become a major concern in the area of communication and information exchange via the Internet.In this paper,an intelligent text Zero-Watermarking approach SETZWMWMM(Smart English Text Zero-Watermarking Approach Based on Mid-Level Order and Word Mechanism of Markov Model)has been proposed for the content authentication and tampering detection of English text contents.The SETZWMWMM approach embeds and detects the watermark logically without altering the original English text document.Based on Hidden Markov Model(HMM),Third level order of word mechanism is used to analyze the interrelationship between contexts of given English texts.The extracted features are used as a watermark information and integrated with digital zero-watermarking techniques.To detect eventual tampering,SETZWMWMM has been implemented and validated with attacked English text.Experiments were performed on four datasets of varying lengths under multiple random locations of insertion,reorder and deletion attacks.The experimental results show that our method is more sensitive and efficient for all kinds of tampering attacks with high level accuracy of tampering detection than compared methods.展开更多
In this paper,a combined approach CAZWNLP(a combined approach of zero-watermarking and natural language processing)has been developed for the tampering detection of English text exchanged through the Internet.The thir...In this paper,a combined approach CAZWNLP(a combined approach of zero-watermarking and natural language processing)has been developed for the tampering detection of English text exchanged through the Internet.The third gram of alphanumeric of the Markov model has been used with text-watermarking technologies to improve the performance and accuracy of tampering detection issues which are limited by the existing works reviewed in the literature of this study.The third-grade level of the Markov model has been used in this method as natural language processing technology to analyze an English text and extract the textual characteristics of the given contexts.Moreover,the extracted features have been utilized as watermark information and then validated with the attacked English text to detect any suspected tampering occurred on it.The embedding mechanism of CAZWNLP method will be achieved logically without effects or modifying the original text document to embed a watermark key.CAZWNLP has been implemented using VS code IDE with PHP.The experimental and simulation results using standard datasets of varying lengths show that the proposed approach can obtain high robustness and better detection accuracy of tampering common random insertion,reorder,and deletion attacks,e.g.,Comparison results with baseline approaches also show the advantages of the proposed approach.展开更多
This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the ...This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the user’s key, then uses the chaotic mapping to get the chaotic sequence and inserts the sequence into the LSBs of the image blocks to get the watermarked image blocks. The paper reconstructed the watermarked image from all the embedded blocks. The analysis and experimental results show that the scheme is pretty fragile to tampering, and it can localize the tampering position accurately, reach 3×3 blocks.展开更多
This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a mult...This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a multi-scale quality manner.In the proposed approach,the reference data composed of several parts and each part is protected by a channel coding rate according to its importance.The first part,which is used to reconstruct a rough approximation of the original image,is highly protected in order to resist against higher tampering rates.Other parts are protected with lower rates according to their importance leading to lower tolerable tampering rate(TTR),but the higher quality of the recovered images.The proposed MSSR approach is an efficient solution for the main disadvantage of the current methods,which either recover a tampered image in low tampering rates or fails when tampering rate is above the TTR value.The simulation results on 10000 test images represent the efficiency of the multi-scale self-recovery feature of the proposed approach in comparison with the existing methods.展开更多
To detect and recover random tampering areas,a combined-decision-based self-embedding watermarking scheme is proposed herein.In this scheme,the image is first partitioned into 2×2 size blocks.Next,the high 5 bits...To detect and recover random tampering areas,a combined-decision-based self-embedding watermarking scheme is proposed herein.In this scheme,the image is first partitioned into 2×2 size blocks.Next,the high 5 bits of a block’s average value is embedded into its offset block.The tampering type of block is detected by comparing the watermarks of its pre-offset and post-offset blocks.The theoretical analysis and experiments demonstrate that the proposed scheme not only has a lower ratio of false detection but also better performance with regard to avoiding random tampering.展开更多
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Research Groups Program Grant No.(RGP-1443-0051).
文摘Owing to the rapid increase in the interchange of text information through internet networks,the reliability and security of digital content are becoming a major research problem.Tampering detection,Content authentication,and integrity verification of digital content interchanged through the Internet were utilized to solve a major concern in information and communication technologies.The authors’difficulties were tampering detection,authentication,and integrity verification of the digital contents.This study develops an Automated Data Mining based Digital Text Document Watermarking for Tampering Attack Detection(ADMDTW-TAD)via the Internet.The DM concept is exploited in the presented ADMDTW-TAD technique to identify the document’s appropriate characteristics to embed larger watermark information.The presented secure watermarking scheme intends to transmit digital text documents over the Internet securely.Once the watermark is embedded with no damage to the original document,it is then shared with the destination.The watermark extraction process is performed to get the original document securely.The experimental validation of the ADMDTW-TAD technique is carried out under varying levels of attack volumes,and the outcomes were inspected in terms of different measures.The simulation values indicated that the ADMDTW-TAD technique improved performance over other models.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60971095 and No.61172109)Artificial Intelligence Key Laboratory of Sichuan Province(Grant No.2012RZJ01)the Fundamental Research Funds for the Central Universities(Grant No.DUT13RC201)
文摘In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information of the original image is a challenging problem since unknown diverse manipulations may have different characteristics and so do various formats of images.Our principle is that image processing,no matter how complex,may affect image quality,so image quality metrics can be used to distinguish tampered images.In particular,based on the alteration of image quality in modified blocks,the proposed method can locate the tampered areas.Referring to four types of effective no-reference image quality metrics,we obtain 13 features to present an image.The experimental results show that the proposed method is very promising on detecting image tampering and locating the locally tampered areas especially in realistic scenarios.
基金the Deanship of Scientific Research at King Khalid University for funding this work under grant number(R.G.P.2/55/40/2019),Received by Fahd N.Al-Wesabi.www.kku.edu.sa。
文摘In this paper,a hybrid intelligent text zero-watermarking approach has been proposed by integrating text zero-watermarking and hidden Markov model as natural language processing techniques for the content authentication and tampering detection of Arabic text contents.The proposed approach known as Second order of Alphanumeric Mechanism of Markov model and Zero-Watermarking Approach(SAMMZWA).Second level order of alphanumeric mechanism based on hidden Markov model is integrated with text zero-watermarking techniques to improve the overall performance and tampering detection accuracy of the proposed approach.The SAMMZWA approach embeds and detects the watermark logically without altering the original text document.The extracted features are used as a watermark information and integrated with digital zero-watermarking techniques.To detect eventual tampering,SAMMZWA has been implemented and validated with attacked Arabic text.Experiments were performed on four datasets of varying lengths under multiple random locations of insertion,reorder and deletion attacks.The experimental results show that our method is more sensitive for all kinds of tampering attacks with high level accuracy of tampering detection than compared methods.
基金The author extends his appreciation to the Deanship of Scientic Research at King Khalid University for funding this work under grant number(R.G.P.2/55/40/2019),Received by Fahd N.Al-Wesabi.www.kku.edu.sa.
文摘Due to the rapid increase in the exchange of text information via internet networks,the security and the reliability of digital content have become a major research issue.The main challenges faced by researchers are authentication,integrity verication,and tampering detection of the digital contents.In this paper,text zero-watermarking and text feature-based approach is proposed to improve the tampering detection accuracy of English text contents.The proposed approach embeds and detects the watermark logically without altering the original English text document.Based on hidden Markov model(HMM),the fourth level order of the word mechanism is used to analyze the contents of the given English text to nd the interrelationship between the contexts.The extracted features are used as watermark information and integrated with digital zero-watermarking techniques.To detect eventual tampering,the proposed approach has been implemented and validated with attacked English text.Experiments were performed using four standard datasets of varying lengths under multiple random locations of insertion,reorder,and deletion attacks.The experimental and simulation results prove the tampering detection accuracy of our method against all kinds of tampering attacks.Comparison results show that our proposed approach outperforms all the other baseline approaches in terms of tampering detection accuracy.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(GRP/14/42),Received by Fahd N.Al-Wesabi.www.kku.edu.sa.This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
文摘Themost common digital media exchanged via the Internet is in text form.The Arabic language is considered one of themost sensitive languages of content modification due to the presence of diacritics that can cause a change in the meaning.In this paper,an intelligent scheme is proposed for improving the reliability and security of the text exchanged via the Internet.The core mechanism of the proposed scheme depends on integrating the hidden Markov model and zero text watermarking techniques.The watermark key will be generated by utilizing the extracted features of the text analysis process using the third order and word level of the Markov model.The Embedding and detection processes of the proposed scheme will be performed logically without the effect of the original text.The proposed scheme is implemented using PHP with VS code IDE.The simulation results,using varying sizes of standard datasets,show that the proposed scheme can obtain high reliability and provide better accuracy of the common illegal tampering attacks.Comparison results with other baseline techniques show the added value of the proposed scheme.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP.1/53/42),Received by Mohammed Alamgeer.www.kku.edu.sa。
文摘Due to the rapid increase in the exchange of text information via internet networks,the security and authenticity of digital content have become a major research issue.The main challenges faced by researchers are how to hide the information within the text to use it later for authentication and attacks tampering detection without effects on the meaning and size of the given digital text.In this paper,an efficient text-based watermarking method has been proposed for detecting the illegal tampering attacks on theArabic text transmitted online via an Internet network.Towards this purpose,the accuracy of tampering detection and watermark robustness has been improved of the proposed method as compared with the existing approaches.In the proposed method,both embedding and extracting of the watermark are logically implemented,which causes no change in the digital text.This is achieved by using the third level and alphanumeric strategy of the Markov model as a text analysis technique for analyzing the Arabic contents to obtain its features which are considered as the digital watermark.This digital watermark will be used later to detecting any tampering of illegal attack on the received Arabic text.An extensive set of experiments using four data sets of varying lengths proves the effectiveness of our approach in terms of detection accuracy,robustness,and effectiveness under multiple random locations of the common tampering attacks.
文摘Tampering of biometric data has attracted a great deal of attention recently. Furthermore, there could be an intentional or accidental use of a particular biometric sample instead of another for a particular application. Therefore, there exists a need to propose a method to detect data tampering, as well as differentiate biometric samples in cases of intentional or accidental use for a different application. In this paper, fingerprint image tampering is studied. Furthermore, optically acquired fingerprints, synthetically generated fingerprints and contact-less acquired fingerprints are studied for separation purposes using the Benford’s law divergence metric. Benford’s law has shown in literature to be very effective in detecting tampering of natural images. In this paper, the Benford’s law features with support vector machine are proposed for the detection of malicious tampering of JPEG fingerprint images. This method is aimed at protecting against insider attackers and hackers. This proposed method detected tampering effectively, with Equal Error Rate (EER) of 2.08%. Again, the experimental results illustrate that, optically acquired fingerprints, synthetically generated fingerprints and contact-less acquired fingerprints can be separated by the proposed method effectively.
文摘Blind forensics of JPEG image tampering as a kind of digital image blind forensics technology is gradually becoming a new research hotspot in the field of image security. Firstly, the main achievements of domestic and foreign scholars in the blind forensic technology of JPEG image tampering were briefly described. Then, according to the different methods of tampering and detection, the current detection was divided into two types: double JPEG compression detection and block effect inconsistency detection. This paper summarized the existing methods of JPEG image blind forensics detection, and analyzed the two methods. Finally, the existing problems and future research trends were analyzed and prospected to provide further theoretical support for the research of JPEG image blind forensics technology.
文摘With the development of wireless communication technology,cyber physical systems are applied in various fields such as industrial production and infrastructure,where lots of information exchange brings cyber security threats to the systems.From the perspective of system identification with binary-valued observations,we study the optimal attack problem when the system is subject to both denial of service attacks and data tampering attacks.The packet loss rate and the data tampering rate caused by the attack is given,and the estimation error is derived.Then the optimal attack strategy to maximize the identification error with the least energy is described as a min–max optimization problem with constraints.The explicit expression of the optimal attack strategy is obtained.Simulation examples are presented to verify the effectiveness of the main conclusions.
文摘In this paper,we investigate the defense problem against the joint attacks of denial-of-service attacks and data tampering attacks in the framework of system identification with binary-valued observations.By estimating the key parameters of the joint attack and compensating them in the identification algorithm,a compensation-oriented defense scheme is proposed.Then the identification algorithm of system parameter is designed and is further proved to be consistent.The asymptotic normality of the algorithm is obtained,and on this basis,we propose the optimal defense scheme.Furthermore,the implementation of the optimal defense scheme is discussed.Finally,a simulation example is presented to verify the effectiveness of the main results.
基金This work was supported in part by National Natural Science Foundation of China(No.61632020,61472416,61772520)National key research and development program of China(No.2017YFB0802705)+1 种基金Key Research Project of Zhejiang Province(No.2017C01062)Fundamental Theory and Cutting-edge Technology Research Program of Institute of Information Engineering,CAS(No.Y7Z0321102).
文摘Many real world attacks often target the implementation of a cryptographic scheme,rather than the algorithm itself,and a system designer has to consider new models that can capture these attacks.For example,if the key can be tampered by physical attacks on the device,the security of the scheme becomes totally unclear.In this work,we investigate predicate encryption(PE),a powerful encryption primitive,in the setting of tampering attacks.First,we show that many existing frameworks to construct PE are vulnerable to tampering attacks.Then we present a new security notion to capture such attacks.Finally,we take Attrapadung’s framework in Eurocrypt’14 as an example to show how to"compile"these frameworks to tampering resilient ones.Moreover,our method is compatible with the original pair encoding schemes without introducing any redundancy.
基金supported in part by National Natural Science Foundation of China(No.61632020,61472416,61772520)National key research and development program of China(No.2017YFB0802705)+1 种基金Key Research Project of Zhejiang Province(No.2017C01062)Fundamental Theory and Cutting-edge Technology Research Program of Institute of Information Engineering,CAS(No.Y7Z0321102).
文摘Many real world attacks often target the implementation of a cryptographic scheme,rather than the algorithm itself,and a system designer has to consider new models that can capture these attacks.For example,if the key can be tampered by physical attacks on the device,the security of the scheme becomes totally unclear.In this work,we investigate predicate encryption(PE),a powerful encryption primitive,in the setting of tampering attacks.First,we show that many existing frameworks to construct PE are vulnerable to tampering attacks.Then we present a new security notion to capture such attacks.Finally,we take Attrapadung’s framework in Eurocrypt’14 as an example to show how to“compile"these frameworks to tampering resilient ones.Moreover,our method is compatible with the original pair encoding schemes without introducing any redundancy.
基金This study was funded by the Science and Technology Project in Xi’an(No.22GXFW0123)this work was supported by the Special Fund Construction Project of Key Disciplines in Ordinary Colleges and Universities in Shaanxi Province,the authors would like to thank the anonymous reviewers for their helpful comments and suggestions.
文摘As image manipulation technology advances rapidly,the malicious use of image tampering has alarmingly escalated,posing a significant threat to social stability.In the realm of image tampering localization,accurately localizing limited samples,multiple types,and various sizes of regions remains a multitude of challenges.These issues impede the model’s universality and generalization capability and detrimentally affect its performance.To tackle these issues,we propose FL-MobileViT-an improved MobileViT model devised for image tampering localization.Our proposed model utilizes a dual-stream architecture that independently processes the RGB and noise domain,and captures richer traces of tampering through dual-stream integration.Meanwhile,the model incorporating the Focused Linear Attention mechanism within the lightweight network(MobileViT).This substitution significantly diminishes computational complexity and resolves homogeneity problems associated with traditional Transformer attention mechanisms,enhancing feature extraction diversity and improving the model’s localization performance.To comprehensively fuse the generated results from both feature extractors,we introduce the ASPP architecture for multi-scale feature fusion.This facilitates a more precise localization of tampered regions of various sizes.Furthermore,to bolster the model’s generalization ability,we adopt a contrastive learning method and devise a joint optimization training strategy that leverages fused features and captures the disparities in feature distribution in tampered images.This strategy enables the learning of contrastive loss at various stages of the feature extractor and employs it as an additional constraint condition in conjunction with cross-entropy loss.As a result,overfitting issues are effectively alleviated,and the differentiation between tampered and untampered regions is enhanced.Experimental evaluations on five benchmark datasets(IMD-20,CASIA,NIST-16,Columbia and Coverage)validate the effectiveness of our proposed model.The meticulously calibrated FL-MobileViT model consistently outperforms numerous existing general models regarding localization accuracy across diverse datasets,demonstrating superior adaptability.
基金supported by the National Natural Science Foundation of China(Nos.U2001202,62072480,U1736118)the National Key R&D Program of China(Nos.2019QY2202,2019QY(Y)0207)+1 种基金the Key Areas R&D Program of Guangdong(No.2019B010136002)the Key Scientific Research Program of Guangzhou(No.201804020068).
文摘In recent years,with the rapid development of deep learning technologies,some neural network models have been applied to generate fake media.DeepFakes,a deep learning based forgery technology,can tamper with the face easily and generate fake videos that are difficult to be distinguished by human eyes.The spread of face manipulation videos is very easy to bring fake information.Therefore,it is important to develop effective detection methods to verify the authenticity of the videos.Due to that it is still challenging for current forgery technologies to generate all facial details and the blending operations are used in the forgery process,the texture details of the fake face are insufficient.Therefore,in this paper,a new method is proposed to detect DeepFake videos.Firstly,the texture features are constructed,which are based on the gradient domain,standard deviation,gray level co-occurrence matrix and wavelet transform of the face region.Then,the features are processed by the feature selection method to form a discriminant feature vector,which is finally employed to SVM for classification at the frame level.The experimental results on the mainstream DeepFake datasets demonstrate that the proposed method can achieve ideal performance,proving the effectiveness of the proposed method for DeepFake videos detection.
文摘With the popularization of high-performance electronic imaging equipment and the wide application of digital image editing software,the threshold of digital image editing becomes lower and lower.Thismakes it easy to trick the human visual system with professionally altered images.These tampered images have brought serious threats to many fields,including personal privacy,news communication,judicial evidence collection,information security and so on.Therefore,the security and reliability of digital information has been increasingly concerned by the international community.In this paper,digital image tamper detection methods are classified according to the clues that they rely on,detection methods based on image content and detection methods based on double JPEG compression traces.This paper analyzes and discusses the important algorithms in several classification methods,and summarizes the problems existing in various methods.Finally,this paper predicts the future development trend of tamper detection.
基金The author extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(R.G.P.2/55/40/2019),Received by Fahd N.Al-Wesabi.www.kku.edu.sa。
文摘Text information is principally dependent on the natural languages.Therefore,improving security and reliability of text information exchanged via internet network has become the most difficult challenge that researchers encounter.Content authentication and tampering detection of digital contents have become a major concern in the area of communication and information exchange via the Internet.In this paper,an intelligent text Zero-Watermarking approach SETZWMWMM(Smart English Text Zero-Watermarking Approach Based on Mid-Level Order and Word Mechanism of Markov Model)has been proposed for the content authentication and tampering detection of English text contents.The SETZWMWMM approach embeds and detects the watermark logically without altering the original English text document.Based on Hidden Markov Model(HMM),Third level order of word mechanism is used to analyze the interrelationship between contexts of given English texts.The extracted features are used as a watermark information and integrated with digital zero-watermarking techniques.To detect eventual tampering,SETZWMWMM has been implemented and validated with attacked English text.Experiments were performed on four datasets of varying lengths under multiple random locations of insertion,reorder and deletion attacks.The experimental results show that our method is more sensitive and efficient for all kinds of tampering attacks with high level accuracy of tampering detection than compared methods.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(R.G.P.2/55/40/2019)Received by Fahd N.Al-Wesabi.www.kku.edu.sa。
文摘In this paper,a combined approach CAZWNLP(a combined approach of zero-watermarking and natural language processing)has been developed for the tampering detection of English text exchanged through the Internet.The third gram of alphanumeric of the Markov model has been used with text-watermarking technologies to improve the performance and accuracy of tampering detection issues which are limited by the existing works reviewed in the literature of this study.The third-grade level of the Markov model has been used in this method as natural language processing technology to analyze an English text and extract the textual characteristics of the given contexts.Moreover,the extracted features have been utilized as watermark information and then validated with the attacked English text to detect any suspected tampering occurred on it.The embedding mechanism of CAZWNLP method will be achieved logically without effects or modifying the original text document to embed a watermark key.CAZWNLP has been implemented using VS code IDE with PHP.The experimental and simulation results using standard datasets of varying lengths show that the proposed approach can obtain high robustness and better detection accuracy of tampering common random insertion,reorder,and deletion attacks,e.g.,Comparison results with baseline approaches also show the advantages of the proposed approach.
文摘This paper proposed a novel fragile watermarking scheme based on singular value decomposition (SVD) and 2D chaotic mapping. It obtains chaotic initial values from the image blocks singular value decomposition and the user’s key, then uses the chaotic mapping to get the chaotic sequence and inserts the sequence into the LSBs of the image blocks to get the watermarked image blocks. The paper reconstructed the watermarked image from all the embedded blocks. The analysis and experimental results show that the scheme is pretty fragile to tampering, and it can localize the tampering position accurately, reach 3×3 blocks.
文摘This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a multi-scale quality manner.In the proposed approach,the reference data composed of several parts and each part is protected by a channel coding rate according to its importance.The first part,which is used to reconstruct a rough approximation of the original image,is highly protected in order to resist against higher tampering rates.Other parts are protected with lower rates according to their importance leading to lower tolerable tampering rate(TTR),but the higher quality of the recovered images.The proposed MSSR approach is an efficient solution for the main disadvantage of the current methods,which either recover a tampered image in low tampering rates or fails when tampering rate is above the TTR value.The simulation results on 10000 test images represent the efficiency of the multi-scale self-recovery feature of the proposed approach in comparison with the existing methods.
基金This work was supported in part by the National Natural Science Foundation of China(No.61401512,61602508,61772549,6141512 and U1636219)the National Key R&D Program of China(No.2016YFB0801303 and 2016QY01W0105)+1 种基金the Key Technologies R&D Program of Henan Province(No.162102210032)the Key Science and Technology Research Project of Henan Province(No.152102210005).
文摘To detect and recover random tampering areas,a combined-decision-based self-embedding watermarking scheme is proposed herein.In this scheme,the image is first partitioned into 2×2 size blocks.Next,the high 5 bits of a block’s average value is embedded into its offset block.The tampering type of block is detected by comparing the watermarks of its pre-offset and post-offset blocks.The theoretical analysis and experiments demonstrate that the proposed scheme not only has a lower ratio of false detection but also better performance with regard to avoiding random tampering.