In this paper, using the tanh-function method, we introduce a new approach to solitary wave solutions for solving nonlinear PDEs. The proposed method is based on adding integration constants to the resulting nonlinear...In this paper, using the tanh-function method, we introduce a new approach to solitary wave solutions for solving nonlinear PDEs. The proposed method is based on adding integration constants to the resulting nonlinear ODEs from the nonlinear PDEs using the wave transformation. Also, we use a transformation related to those integration constants. Some examples are considered to find their exact solutions such as KdV- Burgers class and Fisher, Boussinesq and Klein-Gordon equations. Moreover, we discuss the geometric interpretations of the resulting exact solutions.展开更多
In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equat...In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.展开更多
In this paper, a new extended complex tanh-function method is presented for constructing traveling wave, non-traveling wave, and coefficient functions' soliton-like solutions of nonlinear equations. This method is mo...In this paper, a new extended complex tanh-function method is presented for constructing traveling wave, non-traveling wave, and coefficient functions' soliton-like solutions of nonlinear equations. This method is more powerful than the complex tanh-function method [Chaos, Solitons and Fractals 20 (2004) 1037]. Abundant new solutions o[ (2q-1)-dimensional Hirota equation are obtained by using this method and symbolic computation system Maple.展开更多
First, two tanh-coth type solutions of a class of nonlinear wave equation are derived by using a simplified modified extended tanh-function method. Then, further analysis to some tanh-coth type solutions of nonlinear ...First, two tanh-coth type solutions of a class of nonlinear wave equation are derived by using a simplified modified extended tanh-function method. Then, further analysis to some tanh-coth type solutions of nonlinear evolution equations are given. The results show that when balance number m is one or two, the tanh-eoth type solutions obtained by the modified extended tanh-funetion method can be obtained by using the hyperbolic-function method.展开更多
In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function method. We show that the (G'/G)?-expansion method is a special case of the generalized tanh-...In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function method. We show that the (G'/G)?-expansion method is a special case of the generalized tanh-function type method, so the (G'/G)?-expansion method is considered as a special deformation application of the transformed rational function method. We demonstrate that all solutions obtained by the (G'/G)?-expansion method were found by the generalized tanh-function type method. As applications, we consider mKdV equation. Compared with the (G'/G) -expansion method, the generalized tanh-function type method gives new and more abundant solutions.展开更多
In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equati...In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.展开更多
In this paper, the Auto-B?cklund transformation connected with the homogeneous balance method (HB) and the extended tanh-function method are used to construct new exact solutions for the time-dependent coefficients Ca...In this paper, the Auto-B?cklund transformation connected with the homogeneous balance method (HB) and the extended tanh-function method are used to construct new exact solutions for the time-dependent coefficients Calogero-Degasperis (VCCD) equation. New soliton and periodic solutions of many types are obtained. Furthermore, the soliton propagation is discussed under the effect of the variable coefficients.展开更多
文摘In this paper, using the tanh-function method, we introduce a new approach to solitary wave solutions for solving nonlinear PDEs. The proposed method is based on adding integration constants to the resulting nonlinear ODEs from the nonlinear PDEs using the wave transformation. Also, we use a transformation related to those integration constants. Some examples are considered to find their exact solutions such as KdV- Burgers class and Fisher, Boussinesq and Klein-Gordon equations. Moreover, we discuss the geometric interpretations of the resulting exact solutions.
基金The NSF(11001042) of ChinaSRFDP(20100043120001)FRFCU(09QNJJ002)
文摘In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘In this paper, a new extended complex tanh-function method is presented for constructing traveling wave, non-traveling wave, and coefficient functions' soliton-like solutions of nonlinear equations. This method is more powerful than the complex tanh-function method [Chaos, Solitons and Fractals 20 (2004) 1037]. Abundant new solutions o[ (2q-1)-dimensional Hirota equation are obtained by using this method and symbolic computation system Maple.
基金Supported by the Natural Science Foundation of China under Grant No.11071209
文摘First, two tanh-coth type solutions of a class of nonlinear wave equation are derived by using a simplified modified extended tanh-function method. Then, further analysis to some tanh-coth type solutions of nonlinear evolution equations are given. The results show that when balance number m is one or two, the tanh-eoth type solutions obtained by the modified extended tanh-funetion method can be obtained by using the hyperbolic-function method.
文摘In this paper a generalized tanh-function type method is proposed by using the idea of the transformed rational function method. We show that the (G'/G)?-expansion method is a special case of the generalized tanh-function type method, so the (G'/G)?-expansion method is considered as a special deformation application of the transformed rational function method. We demonstrate that all solutions obtained by the (G'/G)?-expansion method were found by the generalized tanh-function type method. As applications, we consider mKdV equation. Compared with the (G'/G) -expansion method, the generalized tanh-function type method gives new and more abundant solutions.
文摘In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.
文摘In this paper, the Auto-B?cklund transformation connected with the homogeneous balance method (HB) and the extended tanh-function method are used to construct new exact solutions for the time-dependent coefficients Calogero-Degasperis (VCCD) equation. New soliton and periodic solutions of many types are obtained. Furthermore, the soliton propagation is discussed under the effect of the variable coefficients.
基金Project Supported by the National Natural Science Foundation of China(10461006)the Natural Science Foundation ofInner Mongolia(200408020103)the High Education Science Research Programof Inner Mongolia(NJ02035).