In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f...This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for cont...The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for controlling the four-axis motion is proposed. The algorithm is applicable to both the invariable and variable taper machining. Motion loci of the machining platform and the wire guiding head are deduced by the algorithm according to the bottom surface locus of the workpiece and the taper angle. The algorithm is used in the CNC system of the four-axis WEDM machine tool and confirmed to be effective.展开更多
Considering both the compaction effect of pile surrounding soil and the stress diffusion effect of pile end soil,this paper theoretically investigates the torsional vibration characteristics of tapered pile.Utilizing ...Considering both the compaction effect of pile surrounding soil and the stress diffusion effect of pile end soil,this paper theoretically investigates the torsional vibration characteristics of tapered pile.Utilizing the complex stiffness transfer model to simulate compaction effect and tapered fictitious soil pile model to simulate stress diffusion,the analytical solution for the torsional impedance at tapered pile top is obtained by virtue of Laplace transform technique and impedance transfer method.Based on the present solution,a parametric study is conducted to investigate the rationality of the present solution and the influence of soil and pile properties on the torsional vibration characteristics of tapered pile embedded in layered soil.The results show that,both the compaction effect and stress diffusion effect have significant influence on the torsional vibration characteristics of tapered pile,and these two factors should be considered during the dynamic design of pile foundation.展开更多
We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations. In Sweden there is an increasing interest in the ...We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations. In Sweden there is an increasing interest in the use of poplar. Effective management of poplar plantations for high yield production would be facilitated by taper equations providing better predictions of stem volume than currently available equations. In the study a polynomial stem taper equation with five parameters was established for individual poplar trees growing on former farmland. The outputs of the polynomial taper equation were compared with five published equations. Data for fitting the equations were collected from 69 poplar trees growing at 37 stands in central and southern Sweden (lat. 55–60° N). The mean age of the stands was 21 years (range 14–43), the mean density 984 stems·ha?1 (198–3,493), and the mean diameter at breast height (outside bark) 25 cm (range 12–40). To verify the tested equations, performance of accuracy and precision diameter predictions at seven points along the stem was closely analyzed. Statistics used for evaluation of the equations indicated that the variable exponent taper equation presented by Kozak (1988) performed best and can be recommended. The stem taper equation by Kozak (1988) recommended in the study is likely to be beneficial for optimising the efficiency and profitability of poplar plantation management. The constructed polynomial equation and the segmented equation presented by Max & Burkhart (1976) were second and third ranked. Due to the statistical complexity of Kozak’s equation, the constructed polynomial equation is alternatively recommended when a simple model is requested and larger bias is accepted.展开更多
A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a ta...A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a tapered rib core region and a double cladding region.Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region.The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular.A novel,easy method of fabricating tapered rib spot size converter based on silicon on insulator material is proposed.展开更多
The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS ...The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii.展开更多
High-power ridge-waveguide tapered InGaAs-AlGaAs lasers emitting at 980nm were fabricated. Lasers with a total length L = 1850μm and different lengths of the ridge waveguide Lrw were processed to study the influence ...High-power ridge-waveguide tapered InGaAs-AlGaAs lasers emitting at 980nm were fabricated. Lasers with a total length L = 1850μm and different lengths of the ridge waveguide Lrw were processed to study the influence of the straight section on the spatial mode filtering. When Lrw is 450μm, the devices have the optimized maxi- mum output power and beam quality,and the output power P is 4. 28W. The beam propagation ratio M2 is 3. 79 at 1W.展开更多
Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and...Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and the degree of taper were investigated. An analytical model is presented to determine the location of the maximum stress when subjected to a uniformly distributed load or a point load at the free end and was validated using finite element analysis and physical tests. It was found that the maximum stress always occurs at the support when subjected to a uniformly distributed load. When subjected to a point load at the free end and the degree of taper is up to seven, it was found that Miller's equation could be used to determine the location of the maximum stress. However, it is shown that when the degree of taper is greater than seven, Miller's equation does not accurately predict the location and the analytical model should be used. It was also found that the location of the maximum stress was solely dependent on the degree of taper, while a geometric ratio, fl was required to determine the magnitude of the maximum stress. A simple method that predicts the magnitude of the maximum stress is proposed. The average error in the prediction of the magnitude of the maximum stress is found to be less than 1.0%.展开更多
In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that...In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that the bandwidth limitation of TSA mainly depends on its feeding structure, an improved CPW-based feed structure etched on the backboard of the BTSA is adopted to perform traveling-wave transition. Both the simulation results and measurement data verify that the proposed feeding structure results in "high-pass" frequency response for antenna impedance matching. The voltage standing wave ratio (VSWR) is less than 2:1 when the frequency is higher than 3 GHz. The antenna gain exceeds 7 dBi with good radiation patterns when the bandwidth is from 4 to 16 GHz. This ultra wideband (UWB) antenna with a compact size is specially available for the electronic systems of counter-measure and microwave imaging.展开更多
Segmented taper equation was selected to model stem profile of Dahurian larch (Larix gmelinii Rupr.). The data were based on stem analysis of 74 trees from Dailing Forest Bureau in Heilongjiang Province, Northeaster...Segmented taper equation was selected to model stem profile of Dahurian larch (Larix gmelinii Rupr.). The data were based on stem analysis of 74 trees from Dailing Forest Bureau in Heilongjiang Province, Northeastern China. Two taper equations with crown ratio and stand basal area were derived from the Max and Burkhart’s (1976) taper equation. Three taper equations were evaluated: (1) the original equation, (2) the original equation with crown ratio, and (3) the original equation with basal area. SAS NLIN and SYSNLIN procedures were used to fit taper equations. Fit statistics and cross-validation were used to evaluate the accuracy and precision of these models. Parameter estimates showed that the original equation with inclusion of crown ratio and basal area variables provided significantly different parameter estimates with lower standard errors. Overall fit statistics indicated that the root mean square error (RMSE) for diameter outside and inside bark decreased respectively by 10% and 7% in the original model with crown ratio and by 12% and 7.2% in the original model with basal area. Cross-validation further confirmed that the original equation with inclusion of crown ratio and basal area variables provided more accurate predictions at the lower section (relative heights, 10%) and upper section (relative heights, 50%) for both outside and inside bark diameters.展开更多
A micropolar model for axisymmetric blood flow through an axially nonsymmetreic but radially symmetric mild stenosis tapered artery is presented. To estimate the effect of the stenosis shape, a suitable geometry has b...A micropolar model for axisymmetric blood flow through an axially nonsymmetreic but radially symmetric mild stenosis tapered artery is presented. To estimate the effect of the stenosis shape, a suitable geometry has been considered such that the axial shape of the stenosis can be changed easily just by varying a parameter (referred to as the shape parameter). The model is also used to study the effect of the taper angle Ф. Flow parameters such as the velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis (stenosis throat) have been computed for different values of the shape parameter n, the taper angle Ф, the coupling number N and the micropolar parameter m. It is shown that the resistance to flow decreases with increasing the shape parameter n and the micropolar parameter m while it increases with increasing the coupling number N. So, the magnitude of the resistance impedance is higher for a micropolar fluid than that for a Newtonian fluid model. Finally, the velocity profile, the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis are discussed for different values of the parameters involved on the problem.展开更多
The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The r...The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The research is executed in view of a three-parameter foundation which includes the eff ects of the Winkler coeffi cient, Pasternak coeffi cient and damping coeffi cient of the elastic medium. The governing equations of free vibration of a non-prismatic Timoshenko beam under an axially conservative force resting on visco-Pasternak foundations are transformed into ordinary diff erential equations with variable coeffi cients in light of the bending rotation angle and transverse displacement. All the natural frequencies orders together with the corresponding mode shapes of the beam are calculated at the same time, and a good convergence and accuracy of the proposed method is verifi ed through two numerical examples. The infl uences of foundation mechanical characteristics together with rotary inertia and shear deformation on natural frequencies of the beam with diff erent taper ratios are analyzed. A comprehensive parametric numerical study is carried out emphasizing the primary parameters that describe the dynamic property of the beam.展开更多
treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental ...treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady- state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m^3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m^3/(m^3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m^3·d), the COD removal efficiency decreased. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.展开更多
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
基金National Natural Science Foundation of China under Grand No.51808190the Central Government Guides Local Science and Technology Development Fund Projects under Grand No.XZ202301YD0019C+2 种基金the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education under Grand No.2022P04the Central University Basic Research Fund of China under Grand No.B220202017。
文摘This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
文摘The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for controlling the four-axis motion is proposed. The algorithm is applicable to both the invariable and variable taper machining. Motion loci of the machining platform and the wire guiding head are deduced by the algorithm according to the bottom surface locus of the workpiece and the taper angle. The algorithm is used in the CNC system of the four-axis WEDM machine tool and confirmed to be effective.
基金Projects(51578164,51678547,51878634,51878185,41807262)supported by the National Natural Science Foundation of China。
文摘Considering both the compaction effect of pile surrounding soil and the stress diffusion effect of pile end soil,this paper theoretically investigates the torsional vibration characteristics of tapered pile.Utilizing the complex stiffness transfer model to simulate compaction effect and tapered fictitious soil pile model to simulate stress diffusion,the analytical solution for the torsional impedance at tapered pile top is obtained by virtue of Laplace transform technique and impedance transfer method.Based on the present solution,a parametric study is conducted to investigate the rationality of the present solution and the influence of soil and pile properties on the torsional vibration characteristics of tapered pile embedded in layered soil.The results show that,both the compaction effect and stress diffusion effect have significant influence on the torsional vibration characteristics of tapered pile,and these two factors should be considered during the dynamic design of pile foundation.
基金financially supported by Skogssll-skapet foundation
文摘We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations. In Sweden there is an increasing interest in the use of poplar. Effective management of poplar plantations for high yield production would be facilitated by taper equations providing better predictions of stem volume than currently available equations. In the study a polynomial stem taper equation with five parameters was established for individual poplar trees growing on former farmland. The outputs of the polynomial taper equation were compared with five published equations. Data for fitting the equations were collected from 69 poplar trees growing at 37 stands in central and southern Sweden (lat. 55–60° N). The mean age of the stands was 21 years (range 14–43), the mean density 984 stems·ha?1 (198–3,493), and the mean diameter at breast height (outside bark) 25 cm (range 12–40). To verify the tested equations, performance of accuracy and precision diameter predictions at seven points along the stem was closely analyzed. Statistics used for evaluation of the equations indicated that the variable exponent taper equation presented by Kozak (1988) performed best and can be recommended. The stem taper equation by Kozak (1988) recommended in the study is likely to be beneficial for optimising the efficiency and profitability of poplar plantation management. The constructed polynomial equation and the segmented equation presented by Max & Burkhart (1976) were second and third ranked. Due to the statistical complexity of Kozak’s equation, the constructed polynomial equation is alternatively recommended when a simple model is requested and larger bias is accepted.
文摘A novel structure of spot size converter is designed to allow low loss and large alignment tolerance between single mode rib waveguide devices and fiber arrays theoretically.The spot size converter consists of a tapered rib core region and a double cladding region.Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region.The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular.A novel,easy method of fabricating tapered rib spot size converter based on silicon on insulator material is proposed.
文摘The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii.
文摘High-power ridge-waveguide tapered InGaAs-AlGaAs lasers emitting at 980nm were fabricated. Lasers with a total length L = 1850μm and different lengths of the ridge waveguide Lrw were processed to study the influence of the straight section on the spatial mode filtering. When Lrw is 450μm, the devices have the optimized maxi- mum output power and beam quality,and the output power P is 4. 28W. The beam propagation ratio M2 is 3. 79 at 1W.
文摘Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and the degree of taper were investigated. An analytical model is presented to determine the location of the maximum stress when subjected to a uniformly distributed load or a point load at the free end and was validated using finite element analysis and physical tests. It was found that the maximum stress always occurs at the support when subjected to a uniformly distributed load. When subjected to a point load at the free end and the degree of taper is up to seven, it was found that Miller's equation could be used to determine the location of the maximum stress. However, it is shown that when the degree of taper is greater than seven, Miller's equation does not accurately predict the location and the analytical model should be used. It was also found that the location of the maximum stress was solely dependent on the degree of taper, while a geometric ratio, fl was required to determine the magnitude of the maximum stress. A simple method that predicts the magnitude of the maximum stress is proposed. The average error in the prediction of the magnitude of the maximum stress is found to be less than 1.0%.
基金The National High Technology Research and Development Program of China(863 Program)(No.2007AA01Z264)
文摘In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that the bandwidth limitation of TSA mainly depends on its feeding structure, an improved CPW-based feed structure etched on the backboard of the BTSA is adopted to perform traveling-wave transition. Both the simulation results and measurement data verify that the proposed feeding structure results in "high-pass" frequency response for antenna impedance matching. The voltage standing wave ratio (VSWR) is less than 2:1 when the frequency is higher than 3 GHz. The antenna gain exceeds 7 dBi with good radiation patterns when the bandwidth is from 4 to 16 GHz. This ultra wideband (UWB) antenna with a compact size is specially available for the electronic systems of counter-measure and microwave imaging.
基金This study was supported by the National Natural Science Foundation of China(30972363)Special Fund for For-estry-Scientific Research in the Public Interest(201004026)+2 种基金China Postdoctoral Science Foundation(200902362,20100471014)the Fun-damental Research Funds for the Central Universities(DL10CA06)SRF for ROCS,SEM.
文摘Segmented taper equation was selected to model stem profile of Dahurian larch (Larix gmelinii Rupr.). The data were based on stem analysis of 74 trees from Dailing Forest Bureau in Heilongjiang Province, Northeastern China. Two taper equations with crown ratio and stand basal area were derived from the Max and Burkhart’s (1976) taper equation. Three taper equations were evaluated: (1) the original equation, (2) the original equation with crown ratio, and (3) the original equation with basal area. SAS NLIN and SYSNLIN procedures were used to fit taper equations. Fit statistics and cross-validation were used to evaluate the accuracy and precision of these models. Parameter estimates showed that the original equation with inclusion of crown ratio and basal area variables provided significantly different parameter estimates with lower standard errors. Overall fit statistics indicated that the root mean square error (RMSE) for diameter outside and inside bark decreased respectively by 10% and 7% in the original model with crown ratio and by 12% and 7.2% in the original model with basal area. Cross-validation further confirmed that the original equation with inclusion of crown ratio and basal area variables provided more accurate predictions at the lower section (relative heights, 10%) and upper section (relative heights, 50%) for both outside and inside bark diameters.
文摘A micropolar model for axisymmetric blood flow through an axially nonsymmetreic but radially symmetric mild stenosis tapered artery is presented. To estimate the effect of the stenosis shape, a suitable geometry has been considered such that the axial shape of the stenosis can be changed easily just by varying a parameter (referred to as the shape parameter). The model is also used to study the effect of the taper angle Ф. Flow parameters such as the velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis (stenosis throat) have been computed for different values of the shape parameter n, the taper angle Ф, the coupling number N and the micropolar parameter m. It is shown that the resistance to flow decreases with increasing the shape parameter n and the micropolar parameter m while it increases with increasing the coupling number N. So, the magnitude of the resistance impedance is higher for a micropolar fluid than that for a Newtonian fluid model. Finally, the velocity profile, the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis are discussed for different values of the parameters involved on the problem.
基金AHKJT of China under Grant Nos.1708085QE121 and 1808085ME147AHEDU of China under Grant No.TSKJ2017B13
文摘The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The research is executed in view of a three-parameter foundation which includes the eff ects of the Winkler coeffi cient, Pasternak coeffi cient and damping coeffi cient of the elastic medium. The governing equations of free vibration of a non-prismatic Timoshenko beam under an axially conservative force resting on visco-Pasternak foundations are transformed into ordinary diff erential equations with variable coeffi cients in light of the bending rotation angle and transverse displacement. All the natural frequencies orders together with the corresponding mode shapes of the beam are calculated at the same time, and a good convergence and accuracy of the proposed method is verifi ed through two numerical examples. The infl uences of foundation mechanical characteristics together with rotary inertia and shear deformation on natural frequencies of the beam with diff erent taper ratios are analyzed. A comprehensive parametric numerical study is carried out emphasizing the primary parameters that describe the dynamic property of the beam.
文摘treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady- state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m^3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m^3/(m^3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m^3·d), the COD removal efficiency decreased. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.