Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level o...Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level of soil on the Moon, studying the compositions and distribution of elements and minerals on the lunar surface can help to understand the evolution of the Moon through remote sensing technology. The correlation between the spectral characteristics of Chang'e-1 interference imaging spectrometry(IIM) reflectance images and the mineral contents of LSCC(Lunar Soil Characterization Consortium) lunar surface mineral samples was discussed and the spatial distributions of Fe O and Al_2O_3 contained in both pyroxene and plagioclase on LQ-4 were studied using the improved angle parameter method, MNF, and band ratio statistics. A comparison of the mapping results of the optical models by Lucey, Shkuractov and other researchers on Clementine and the gamma ray spectrometry data shows that the content error is within 0.6% for lunar mare areas and close to 1% for the highland areas. The tectonic framework on the lunar surface was also investigated. And based on integrated analysis of previous findings on topography of the lunar surface, Chang'e LAM, CCD and LOLA images and the gravity anomalies data(Clementine GLGM-2), the tectonic unit subdivision was established for LQ-4, the idea of subdividing the lunar tectonic units was proposed, and this will provide a good foundation for studying the lunar tectonic evolution.展开更多
The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The...The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The Mapping methods, the division method of geological tectonic units and the main geological tectonic units are mainly discussed. The strata from Pliocene to Holocene are peeled off so as to display the Pre-Pliocene structures. In basins, isopaches are drawn for the Cenozoic deposits. The plate tectonic theory and present tectonic pattern are adopted as the priorities in tectonic division. As to the division of intraplate tectonic units, it is a revision, complement and improvement of previous dividing systems, and the nomenclature for each tectonic unit follows the current system in China. The first-order tectonic unit is plate (Pacific Plate, Eurasian Plate and Philippine Sea Plate). The second-order tectonic unit is tectonic domain (East Asian continental tectonic domain,East Asian continental margin tectonic domain and west Pacific tectonic domain). The Philippine Sea Plate and the west part of the Pacific Plate are called the West Pacific tectonic domain. The part of the Eurasian Plate involved in this study area can be further divided into East Asian continental tectonic domain and East Asian continental margin tectonic domain. The East Asian continental margin domain is composed of the Ryukyu island arc, the Okinawa Trough back-arc basin and the back-arc basin of Sea of Japan. The East Asian continental tectonic domain in this study area is composed of the Sino-Korea Massif, the Changjiang River (Yangtze) Massif and South China Massif. In turn, these massifs consist of basins, folded belts or uplift zones. The basins,the folded belts or the uplift zones are further divided into uplifts and depressions made up of sags and swells.展开更多
Identifying distinct tectonic units is key to understanding the geotectonic framework and distribution law of oil and gas resources.The South China Sea and its adjacent areas have undergone complex tectonic evolution ...Identifying distinct tectonic units is key to understanding the geotectonic framework and distribution law of oil and gas resources.The South China Sea and its adjacent areas have undergone complex tectonic evolution processes,and the division of tectonic units is controversial.Guided by block tectonics theory,this study divide the South China Sea and its adjacent areas into several distinguished tectonic units relying on known boundary markers such as sutures(ophiolite belts),subduction-collision zones,orogenic belts,and deep faults.This work suggests that the study area is occupied by nine stable blocks(West Burma Block,Sibumasu Block,LanpingSimao Block,Indochina Block,Yangtze Block,Cathaysian Block,Qiongnan Block,Nansha Block,and Northwest Sulu Block),two suture zones(Majiang suture zone and Southeast Yangtze suture zone),two accretionary zones(Sarawak-Sulu accretionary zone and East Sulawesi accretionary zone),one subduction-collision zone(RakhineJava-Timor subduction-collision zone),one ramp zone(Philippine islands ramp zone),and six small oceanic marginal sea basins(South China Sea Basin,Sulu Sea Basin,Sulawesi Sea Basin,Banda Sea Basin,Makassar Basin,and Andaman Sea Basin).This division reflects the tectonic activities,crustal structural properties,and evolutionary records of each evaluated tectonic unit.It is of great theoretical and practical importance to understand the tectonic framework to support the exploration of oil and gas resources in the South China Sea and its adjacent areas.展开更多
The Philippine Sea Plate is located at the convergence zone of the Eurasian Plate,the Pacific Plate,and the Indo-Australian Plate.This paper divides the Philippine Sea Plate into two second-order tectonic units and ei...The Philippine Sea Plate is located at the convergence zone of the Eurasian Plate,the Pacific Plate,and the Indo-Australian Plate.This paper divides the Philippine Sea Plate into two second-order tectonic units and eight third-order tectonic units by summarizing the marine geological,geophysical,and submarine geomorphological data of the Philippine Sea Plate collected for years and referring to the seafloor spreading theory and the trench-arc-basin system.The two second-order tectonic units are the West Philippine Sea block and the Izu-Bonin-Mariana arc-basin system.The former includes the West Philippine Basin,the Huatung Basin,the Daito Basin,and the Palau Basin,while the latter consists of the Kyushu-Palau Ridge,the Shikoku-Parece Vela Basin,the Izu-Bonin Arc,and the Mariana Arc.Furthermore,this study concludes that the Philippine Sea Plate has undergone three stages of tectonic evolution,namely the early stage of the evolution of marginal basins with Cretaceous basement(Early Cretaceous),the middle stage of the spreading of the West Philippine Basin(Eocene),and the late stage of the subduction of the Izu-Bonin-Mariana arc-basin system(Oligocene-present).The Kyushu-Palau Ridge is a window to discover the tectonic evolution of the Philippine Sea Plate due to its unique geographical location.展开更多
Based on the comprehensive study of geology and geophysics in African continent,three types of lithosphere(craton-type,orogenic-type and rift-type)can be identified.Considering lithosphere discontinuities as the bound...Based on the comprehensive study of geology and geophysics in African continent,three types of lithosphere(craton-type,orogenic-type and rift-type)can be identified.Considering lithosphere discontinuities as the boundary,two first-order tectonic units(mainly cratonic-type in the west and rift-type in the east)are proposed.Different types of lithosphere can be divided into secondary-order and third-order structural units,and the blocks within lithosphere can be further divided into fourth-order structural units.The geological history,the formation process and significance of different types of lithosphere in African continent are briefly discussed.展开更多
Abstract: Two ophiolitic mélange belts in the Late Carboniferous formations have been discovered recently in the Alxa region. One is in the Engger Us fault and possesses properties of oceanic crust. The other is ...Abstract: Two ophiolitic mélange belts in the Late Carboniferous formations have been discovered recently in the Alxa region. One is in the Engger Us fault and possesses properties of oceanic crust. The other is in the Badain Jaran fault and shows properties of a back-arc basin. These two faults, together with the Yagan fault, constitute the important boundaries of tectonic units in the Alax region. The four tectonic units delimited by these faults are different in rock assemblages, metamorphism and geochemistry. They reflect the nature of tectonic environments in which they are found. The tectonic units may be traced and correlated to the eastern and western neighbouring areas. The formation and evolution process of the units and their interaction in the Alxa region may be described in terms of the evolution of the Palaeo-Mongolian Ocean and its continental margins.展开更多
The Sinus Iridum region, the first choice for China's"Lunar Exploration Project"is located at the center of the lunar LQ-4 area and is the site of Chang'e-3 (CE-3)'s soft landing. To make the scientific explora...The Sinus Iridum region, the first choice for China's"Lunar Exploration Project"is located at the center of the lunar LQ-4 area and is the site of Chang'e-3 (CE-3)'s soft landing. To make the scientific exploration of Chang'e-3 more targeted and scientific, and to obtain a better macro-level understanding of the geotectonic environment of the Sinus Iridum region, the tectonic elements in LQ-4 region have been studied and the typical structures were analyzed statistically using data from CE-1, Clementine, LRO and Lunar Prospector missions. Also, the mineral components and periods of mare basalt activities in the study area have been ascertained. The present study divides the tectonic units and establishes the major tectonic events and sequence of evolution in the study area based on morphology, mineral constituents, and tectonic element distribution.展开更多
The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coa...The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coalfield basement structures, features of the main faults, and the distribution of coal measures, this paper brings forward a scheme of coalfield tectonic divisional units and the definition of the coal-controlling structural styles in the northern Qaidam Basin. The structure control of the distribution of coal measures is further discussed. Several stages of regional tectonic activities since the Indosinian has led to the distribution of coal measures into the characteristics of zonation from the north to south and block from east to west. The results indicate that the structural deformations are the most intense in the front of the three uplifted belts, which are characterized by the combination of thrusts. The coal measures are uplifted to the shallow formations, and are easy to be exploited, but the scale of mines is small because of serious damages by the coal distribution. On the contrary, the stress and strain are weak in the three depressions, with the coal-controlling structural styles being mainly the thrust-fold and thrust-monocline combinations. The distribution of coals in the depressions is relatively stable. The shallower part of the depression will become the key areas for exploration and development of coal resources in the northern Qaidam Basin.展开更多
This study deals with complexity, frequency spectrum and velocity model of the crust-mantle transitional zone in different tectonic units along the northeast margin of Qinghai-Xizang plateau, based on PmP waveform dat...This study deals with complexity, frequency spectrum and velocity model of the crust-mantle transitional zone in different tectonic units along the northeast margin of Qinghai-Xizang plateau, based on PmP waveform data from two deep seismic sounding profiles passing through the area. It reveals that Moho has stable tectonic features in Ordos and Lingzhong basins, where crust and mantle are coupled as first-order discontinuity. Moho shows obvious signs of activity in Haiyuan seismic region and in the contact zone between Bayanhar block and Qaidam block. Crust and mantle in these two areas are coupled as complicated crust-mantle transitional zone consisting of multiple laminae with alternate high and low velocities, totaling 20 km in thickness. The difference between Moho of different tectonic units reflects heterogeneity of the coupled crust-mantle zone; the difference between fine structures of Haiyuan seismic region and Maqin fault zone reflects different deep material composition of the two continent-continent collision zones and the interaction between blocks.展开更多
This paper attempts to review the descriptions on the genetic series of neotectonic forms in Eurasia. Morphotectonically, the Eurasian continental block exhibits a radial-concentric pattern consist- ing of four kinds ...This paper attempts to review the descriptions on the genetic series of neotectonic forms in Eurasia. Morphotectonically, the Eurasian continental block exhibits a radial-concentric pattern consist- ing of four kinds of tectonic units: platforms, rejuvenated and youthful mobile belts, and the continent- ocean transition zones. Vast areas of young and ancient platforms, such as Siberia, have experienced slow-rate Late-Cenozoic uplift and little interior deformation. The youthful orogenic belts are clustered into the giant Alpine-Himalayan megabelt. The rejuvenated mountain belts are characterized by a variety of structural-morphological types of orogens, such as domelike uplifts, block uplifts and intermountain basins. The continent-ocean transition zones in Eastern Asia, including marginal rifts and extensional basins, are resulted from interaction between the continental block and Pacific Ocean and Philippine Sea since the Late Cenozoic. One of the conspicuous features of Eurasia is that most areas lie in the largest geoid depression of the Earth, and the NS trending Uralian-Oman lineament expresses a break on the geoid slope, implying a relationship to deep structure, including density inhomogeneities, down- ward to the core-mantle interface. Besides, the Eurasian continent fully demonstrates morphotectonic and recent geodynamic features of the Northern Hemisphere of the Earth, just in contrast to that of the Southern Hemisphere. It is best to view the surface morphotectonics and deep structure of the Earth as a geodynamic ensemble which has spawned the large-scale geomorphic features on the surface.展开更多
The Tacheng basin has been identified as a Carboniferous basement with a central uplift, sur- rounded by orogenic belts. This identification was based on the comprehensive analysis of field outcrops, regional magnetic...The Tacheng basin has been identified as a Carboniferous basement with a central uplift, sur- rounded by orogenic belts. This identification was based on the comprehensive analysis of field outcrops, regional magnetic and gravimetric data, skeleton seismic profiles, magnetotelluric profiles and drilling data. Here, we present gravimetric and magnetic data analyses of the basement structures of the Tacheng basin and its base formation. We also provide a magnetotelluric profile analysis of the structural features and tectonic framework of basin-mountain patterns. We use local geology, drilling data, and other comprehensive information to document the tectonic framework of the basement of the basin. Small-scale nappe structures are found in the northern basin, whereas stronger and more pronounced thrusting structures are found to the south and east of the basin. The basin is divided into four first-order tectonic units: a central uplift, a northern depression, a southeastern depression and a western depression. In addition, the Emin sag is suggested as a possible reservoir for oil and gas.展开更多
On the basis of the comparison data of Stage II of the tunnel site leveling project at Hutubi seismic station and the observation data of Stage IV of the site cross fault leveling project at Hutubi and the level obser...On the basis of the comparison data of Stage II of the tunnel site leveling project at Hutubi seismic station and the observation data of Stage IV of the site cross fault leveling project at Hutubi and the level observation data from the cross fault survey lines in Dafeng from 1987 to 2012,this paper analyses the variation rates of the tunnel site leveling observation results and the difference of annual change rates of the cross fault level observations at Hongshan seismic station in Hutubi. This paper concludes the reliability of the Ni004 optical level used by the station and puts forward a proposal based on the analysis. This paper also explores the cross fault leveling research on the ground deformation in the region concerned on the basis of the historical observation of the cross fault level at Dafeng and the comparison results of the tunnel site leveling observation in Hutubi.展开更多
The Tongbai orogenic belt(TOB)is composed of six tectonic units.From south to north these units are:Tongbai gneiss rise(TGR);Hongyihe-Luozhuang eclogite belt(HLE);Ma-opo-Hujiazhai igneous rock belt(MHI);Zhoujiawan fly...The Tongbai orogenic belt(TOB)is composed of six tectonic units.From south to north these units are:Tongbai gneiss rise(TGR);Hongyihe-Luozhuang eclogite belt(HLE);Ma-opo-Hujiazhai igneous rock belt(MHI);Zhoujiawan flysch belt(ZFB);Yangzhuang greenschist belt(YGB);and Dongjiazhuang marble belt(DMB).The geometry and kinematic images of the TOB in-clude:the antiformal structures caused by a later uplift process,the top-to-north ductile shear struc-ture that related to a process that the ultrahigh pressure rocks are brought to surface,the top-to-south ductile shear thrust and the sinistrial shear structures related to a south-north direction compression,and the east-west direction fold structures in the upper crust.In the view of the multistage subduc-tion-collision orogenic belt,according to the characters of petrology and its distribution,geometry,kinematics and structural chronology in these tectonic units,tectonic evolution of the TOB can be divided into four stages:oceanic crust subduction during 400―300 Ma,continental collision during 270―250 Ma,continental deep subduction and uplift during 250―205 Ma and doming deformation during 200―185 Ma.展开更多
基金jointly supported by a grant from the National Natural Science Foundation of China(No.41490634)the National Key Basic Research Special Foundation of China(No.2015FY210500)
文摘Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level of soil on the Moon, studying the compositions and distribution of elements and minerals on the lunar surface can help to understand the evolution of the Moon through remote sensing technology. The correlation between the spectral characteristics of Chang'e-1 interference imaging spectrometry(IIM) reflectance images and the mineral contents of LSCC(Lunar Soil Characterization Consortium) lunar surface mineral samples was discussed and the spatial distributions of Fe O and Al_2O_3 contained in both pyroxene and plagioclase on LQ-4 were studied using the improved angle parameter method, MNF, and band ratio statistics. A comparison of the mapping results of the optical models by Lucey, Shkuractov and other researchers on Clementine and the gamma ray spectrometry data shows that the content error is within 0.6% for lunar mare areas and close to 1% for the highland areas. The tectonic framework on the lunar surface was also investigated. And based on integrated analysis of previous findings on topography of the lunar surface, Chang'e LAM, CCD and LOLA images and the gravity anomalies data(Clementine GLGM-2), the tectonic unit subdivision was established for LQ-4, the idea of subdividing the lunar tectonic units was proposed, and this will provide a good foundation for studying the lunar tectonic evolution.
基金The National Natural Science Foundation of China under contract No 40876033the foundation of Geological Investigation Bureau of China under contract No HY126-03
文摘The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The Mapping methods, the division method of geological tectonic units and the main geological tectonic units are mainly discussed. The strata from Pliocene to Holocene are peeled off so as to display the Pre-Pliocene structures. In basins, isopaches are drawn for the Cenozoic deposits. The plate tectonic theory and present tectonic pattern are adopted as the priorities in tectonic division. As to the division of intraplate tectonic units, it is a revision, complement and improvement of previous dividing systems, and the nomenclature for each tectonic unit follows the current system in China. The first-order tectonic unit is plate (Pacific Plate, Eurasian Plate and Philippine Sea Plate). The second-order tectonic unit is tectonic domain (East Asian continental tectonic domain,East Asian continental margin tectonic domain and west Pacific tectonic domain). The Philippine Sea Plate and the west part of the Pacific Plate are called the West Pacific tectonic domain. The part of the Eurasian Plate involved in this study area can be further divided into East Asian continental tectonic domain and East Asian continental margin tectonic domain. The East Asian continental margin domain is composed of the Ryukyu island arc, the Okinawa Trough back-arc basin and the back-arc basin of Sea of Japan. The East Asian continental tectonic domain in this study area is composed of the Sino-Korea Massif, the Changjiang River (Yangtze) Massif and South China Massif. In turn, these massifs consist of basins, folded belts or uplift zones. The basins,the folded belts or the uplift zones are further divided into uplifts and depressions made up of sags and swells.
基金The National Natural Science Foundation of China under contract Nos 41706055,41776072,41602092,4106035 and41776072the Natural Science Foundation of Guangdong Province under contract Nos 2018A030313168 and 2018B030311030the National Marine Geology Special Project under contract Nos DD20160147 and DD20189643。
文摘Identifying distinct tectonic units is key to understanding the geotectonic framework and distribution law of oil and gas resources.The South China Sea and its adjacent areas have undergone complex tectonic evolution processes,and the division of tectonic units is controversial.Guided by block tectonics theory,this study divide the South China Sea and its adjacent areas into several distinguished tectonic units relying on known boundary markers such as sutures(ophiolite belts),subduction-collision zones,orogenic belts,and deep faults.This work suggests that the study area is occupied by nine stable blocks(West Burma Block,Sibumasu Block,LanpingSimao Block,Indochina Block,Yangtze Block,Cathaysian Block,Qiongnan Block,Nansha Block,and Northwest Sulu Block),two suture zones(Majiang suture zone and Southeast Yangtze suture zone),two accretionary zones(Sarawak-Sulu accretionary zone and East Sulawesi accretionary zone),one subduction-collision zone(RakhineJava-Timor subduction-collision zone),one ramp zone(Philippine islands ramp zone),and six small oceanic marginal sea basins(South China Sea Basin,Sulu Sea Basin,Sulawesi Sea Basin,Banda Sea Basin,Makassar Basin,and Andaman Sea Basin).This division reflects the tectonic activities,crustal structural properties,and evolutionary records of each evaluated tectonic unit.It is of great theoretical and practical importance to understand the tectonic framework to support the exploration of oil and gas resources in the South China Sea and its adjacent areas.
基金funded by the projects initiated by the China Geological Survey(DD20190205,DD20160137,DD20191003)the National Natural Science Foundation of China(U20A20100,42002235)the Pilot National Laboratory for Marine Science and Technology(Qingdao)(JCZX202026)。
文摘The Philippine Sea Plate is located at the convergence zone of the Eurasian Plate,the Pacific Plate,and the Indo-Australian Plate.This paper divides the Philippine Sea Plate into two second-order tectonic units and eight third-order tectonic units by summarizing the marine geological,geophysical,and submarine geomorphological data of the Philippine Sea Plate collected for years and referring to the seafloor spreading theory and the trench-arc-basin system.The two second-order tectonic units are the West Philippine Sea block and the Izu-Bonin-Mariana arc-basin system.The former includes the West Philippine Basin,the Huatung Basin,the Daito Basin,and the Palau Basin,while the latter consists of the Kyushu-Palau Ridge,the Shikoku-Parece Vela Basin,the Izu-Bonin Arc,and the Mariana Arc.Furthermore,this study concludes that the Philippine Sea Plate has undergone three stages of tectonic evolution,namely the early stage of the evolution of marginal basins with Cretaceous basement(Early Cretaceous),the middle stage of the spreading of the West Philippine Basin(Eocene),and the late stage of the subduction of the Izu-Bonin-Mariana arc-basin system(Oligocene-present).The Kyushu-Palau Ridge is a window to discover the tectonic evolution of the Philippine Sea Plate due to its unique geographical location.
基金supported by the International Science&Technology Cooperation Program of China(ISTCP)(2011DFA22460)China Geological Survey(DD20190370)Geological Exploration Fund Project of Inner Mongolia Autonomous Region,P.R.China([2020]YS-01).
文摘Based on the comprehensive study of geology and geophysics in African continent,three types of lithosphere(craton-type,orogenic-type and rift-type)can be identified.Considering lithosphere discontinuities as the boundary,two first-order tectonic units(mainly cratonic-type in the west and rift-type in the east)are proposed.Different types of lithosphere can be divided into secondary-order and third-order structural units,and the blocks within lithosphere can be further divided into fourth-order structural units.The geological history,the formation process and significance of different types of lithosphere in African continent are briefly discussed.
基金This study was supported by the China National Natural Science Foundation Grant 49472150.
文摘Abstract: Two ophiolitic mélange belts in the Late Carboniferous formations have been discovered recently in the Alxa region. One is in the Engger Us fault and possesses properties of oceanic crust. The other is in the Badain Jaran fault and shows properties of a back-arc basin. These two faults, together with the Yagan fault, constitute the important boundaries of tectonic units in the Alax region. The four tectonic units delimited by these faults are different in rock assemblages, metamorphism and geochemistry. They reflect the nature of tectonic environments in which they are found. The tectonic units may be traced and correlated to the eastern and western neighbouring areas. The formation and evolution process of the units and their interaction in the Alxa region may be described in terms of the evolution of the Palaeo-Mongolian Ocean and its continental margins.
基金the key project (No. 2009AA122201) under the 863 program sponsored by Ministry of Science & Technology that has funded our research
文摘The Sinus Iridum region, the first choice for China's"Lunar Exploration Project"is located at the center of the lunar LQ-4 area and is the site of Chang'e-3 (CE-3)'s soft landing. To make the scientific exploration of Chang'e-3 more targeted and scientific, and to obtain a better macro-level understanding of the geotectonic environment of the Sinus Iridum region, the tectonic elements in LQ-4 region have been studied and the typical structures were analyzed statistically using data from CE-1, Clementine, LRO and Lunar Prospector missions. Also, the mineral components and periods of mare basalt activities in the study area have been ascertained. The present study divides the tectonic units and establishes the major tectonic events and sequence of evolution in the study area based on morphology, mineral constituents, and tectonic element distribution.
文摘The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coalfield basement structures, features of the main faults, and the distribution of coal measures, this paper brings forward a scheme of coalfield tectonic divisional units and the definition of the coal-controlling structural styles in the northern Qaidam Basin. The structure control of the distribution of coal measures is further discussed. Several stages of regional tectonic activities since the Indosinian has led to the distribution of coal measures into the characteristics of zonation from the north to south and block from east to west. The results indicate that the structural deformations are the most intense in the front of the three uplifted belts, which are characterized by the combination of thrusts. The coal measures are uplifted to the shallow formations, and are easy to be exploited, but the scale of mines is small because of serious damages by the coal distribution. On the contrary, the stress and strain are weak in the three depressions, with the coal-controlling structural styles being mainly the thrust-fold and thrust-monocline combinations. The distribution of coals in the depressions is relatively stable. The shallower part of the depression will become the key areas for exploration and development of coal resources in the northern Qaidam Basin.
基金Chinese Joint Seismological Science Foundation (102025, 104027).Contribution No. RCEG200210, Geophysical Exploration Center, China Earthquake Administration.
文摘This study deals with complexity, frequency spectrum and velocity model of the crust-mantle transitional zone in different tectonic units along the northeast margin of Qinghai-Xizang plateau, based on PmP waveform data from two deep seismic sounding profiles passing through the area. It reveals that Moho has stable tectonic features in Ordos and Lingzhong basins, where crust and mantle are coupled as first-order discontinuity. Moho shows obvious signs of activity in Haiyuan seismic region and in the contact zone between Bayanhar block and Qaidam block. Crust and mantle in these two areas are coupled as complicated crust-mantle transitional zone consisting of multiple laminae with alternate high and low velocities, totaling 20 km in thickness. The difference between Moho of different tectonic units reflects heterogeneity of the coupled crust-mantle zone; the difference between fine structures of Haiyuan seismic region and Maqin fault zone reflects different deep material composition of the two continent-continent collision zones and the interaction between blocks.
基金supported by the Russian Foundation for Basic Research(Grant No.08-05-00105)
文摘This paper attempts to review the descriptions on the genetic series of neotectonic forms in Eurasia. Morphotectonically, the Eurasian continental block exhibits a radial-concentric pattern consist- ing of four kinds of tectonic units: platforms, rejuvenated and youthful mobile belts, and the continent- ocean transition zones. Vast areas of young and ancient platforms, such as Siberia, have experienced slow-rate Late-Cenozoic uplift and little interior deformation. The youthful orogenic belts are clustered into the giant Alpine-Himalayan megabelt. The rejuvenated mountain belts are characterized by a variety of structural-morphological types of orogens, such as domelike uplifts, block uplifts and intermountain basins. The continent-ocean transition zones in Eastern Asia, including marginal rifts and extensional basins, are resulted from interaction between the continental block and Pacific Ocean and Philippine Sea since the Late Cenozoic. One of the conspicuous features of Eurasia is that most areas lie in the largest geoid depression of the Earth, and the NS trending Uralian-Oman lineament expresses a break on the geoid slope, implying a relationship to deep structure, including density inhomogeneities, down- ward to the core-mantle interface. Besides, the Eurasian continent fully demonstrates morphotectonic and recent geodynamic features of the Northern Hemisphere of the Earth, just in contrast to that of the Southern Hemisphere. It is best to view the surface morphotectonics and deep structure of the Earth as a geodynamic ensemble which has spawned the large-scale geomorphic features on the surface.
文摘The Tacheng basin has been identified as a Carboniferous basement with a central uplift, sur- rounded by orogenic belts. This identification was based on the comprehensive analysis of field outcrops, regional magnetic and gravimetric data, skeleton seismic profiles, magnetotelluric profiles and drilling data. Here, we present gravimetric and magnetic data analyses of the basement structures of the Tacheng basin and its base formation. We also provide a magnetotelluric profile analysis of the structural features and tectonic framework of basin-mountain patterns. We use local geology, drilling data, and other comprehensive information to document the tectonic framework of the basement of the basin. Small-scale nappe structures are found in the northern basin, whereas stronger and more pronounced thrusting structures are found to the south and east of the basin. The basin is divided into four first-order tectonic units: a central uplift, a northern depression, a southeastern depression and a western depression. In addition, the Emin sag is suggested as a possible reservoir for oil and gas.
基金sponsored by the Natural Science Foundation of Xinjiang Uighur Autonomous Region2012211B56)the Natural Science Foundation of China(41374031)the Earthquake Science and Technology Spark Plan(XH1030),and the Earthquake Science and Technology Spark Progam XH14054Y)
文摘On the basis of the comparison data of Stage II of the tunnel site leveling project at Hutubi seismic station and the observation data of Stage IV of the site cross fault leveling project at Hutubi and the level observation data from the cross fault survey lines in Dafeng from 1987 to 2012,this paper analyses the variation rates of the tunnel site leveling observation results and the difference of annual change rates of the cross fault level observations at Hongshan seismic station in Hutubi. This paper concludes the reliability of the Ni004 optical level used by the station and puts forward a proposal based on the analysis. This paper also explores the cross fault leveling research on the ground deformation in the region concerned on the basis of the historical observation of the cross fault level at Dafeng and the comparison results of the tunnel site leveling observation in Hutubi.
基金This work was supported by the National Natural Science Foundation of China(Grant No.40272098)the Major State Basic Research Development Program of China(Grant No.G1999075511).
文摘The Tongbai orogenic belt(TOB)is composed of six tectonic units.From south to north these units are:Tongbai gneiss rise(TGR);Hongyihe-Luozhuang eclogite belt(HLE);Ma-opo-Hujiazhai igneous rock belt(MHI);Zhoujiawan flysch belt(ZFB);Yangzhuang greenschist belt(YGB);and Dongjiazhuang marble belt(DMB).The geometry and kinematic images of the TOB in-clude:the antiformal structures caused by a later uplift process,the top-to-north ductile shear struc-ture that related to a process that the ultrahigh pressure rocks are brought to surface,the top-to-south ductile shear thrust and the sinistrial shear structures related to a south-north direction compression,and the east-west direction fold structures in the upper crust.In the view of the multistage subduc-tion-collision orogenic belt,according to the characters of petrology and its distribution,geometry,kinematics and structural chronology in these tectonic units,tectonic evolution of the TOB can be divided into four stages:oceanic crust subduction during 400―300 Ma,continental collision during 270―250 Ma,continental deep subduction and uplift during 250―205 Ma and doming deformation during 200―185 Ma.