Freezing injury is one of the major disasters for the production of winter wheat in the North China Plain, which leads to a significant decrease of wheat yield. This study was conducted to investigate the impact of su...Freezing injury is one of the major disasters for the production of winter wheat in the North China Plain, which leads to a significant decrease of wheat yield. This study was conducted to investigate the impact of subfreezing temperature on freezing injury of various winter wheat cultivars at different sowing time. Three wheat cultivars, including Zhengmai 9023, Wanmai 48 and Wanmai 50, were sowed on 25 September and 5 October, respectively. Plant anatomy was applied to investi- gate the impact of subfreezing temperature on cells of three wheat cultivars, results showed that severe plasmolysis occurred in wheat sowed earlier suddenly encoun- tered subfreezing temperature without cold acclimation, compared with wheat sowed at proper sowing time. The degree of plasmolysis of different cultivars and tissues of wheat had significant differences and showed positive correlation with subfreezing temperature. Wanmai 50 had the highest cold resistance compared with Zhengmai 9023 and Wanmai 48, and there was no significant difference between Zhengmai 9023 and Wanmai 48. This study concluded that wheat cold resistance may be im- proved by adopting proper cultivars and sowing dates.展开更多
In order to more efficiently utilize gypsum to improve meadow alkali soil slightly salinized by soda and sulfate chloride, a total of 27 treatments were de- signed from the perspectives of field capacity, alkalinity, ...In order to more efficiently utilize gypsum to improve meadow alkali soil slightly salinized by soda and sulfate chloride, a total of 27 treatments were de- signed from the perspectives of field capacity, alkalinity, alkaline salt content, optimal irrigation, gypsum conversion, gypsum and soil treatment and improvement depth. The ions on the obtained filtrate were analyzed in terms of salts. The improving ef- ficiency of gypsum for meadow alkali soil was analyzed through comparing the con- tents of soluble salts in pre-improvement and post-improvement soil by reasoning and calculation. The results showed that, (1) the dissolved amount and conversion amount of gypsum were increased, and the soil alkalinity was decreased corre- spondingly with the increased irrigation amount. However, after reaching a certain extent, the linear relationships became unobvious gradually. Therefore, the irrigation amount should be arranged reasonably for different treatment. (2) Compared with those at low temperature, the dissolved amount of gypsum at high temperature was increased by 1.47-1.50 times, the release amount of exchangeable sodium was in- creased by 2.98-4.70 times, and the release amount of exchangeable magnesium was increased by 2.07-2.90 times. In overall, the improving efficiency of gypsum in summer was better. However, gypsum had two shortcomings in summer. First, a large amount of gypsum leaked away. Second, a large amount of exchangeable magnesium, along with exchangeable sodium, was substituted by gypsum. (3) Compared with the other two treatments, treatment B (mixing gypsum and top 20- cm soil) showed the best improving efficiency, and it was characterized by stepwise dealkalization from top to down. In addition, mixing gypsum and topsoil is more practical in the production.展开更多
A combined-cycle power plant (CCPP) is broadly utilized in many countries to cover energy demand due to its higher efficiency than other conventional power plants. The performance of a CCPP is highly sensitive to ambi...A combined-cycle power plant (CCPP) is broadly utilized in many countries to cover energy demand due to its higher efficiency than other conventional power plants. The performance of a CCPP is highly sensitive to ambient air temperature (AAT) and the generated power varies widely during the year with temperature fluctuations. To have an accurate estimation of power generation, it is necessary to develop a model to predict the average monthly power of a CCPP considering ambient temperature changes. In the present work, the Monte Carlo (MC) method was used to obtain the average generated power of a CCPP. The case study was a combined-cycle power plant in Tehran, Iran. The region’s existing meteorological data shows significant fluctuations in the annual ambient temperature, which severely impact the performance of the mentioned plant, causing a stochastic behavior of the output power. To cope with this stochastic nature, the probability distribution of monthly outdoor temperature for 2020 was determined using the maximum likelihood estimation (MLE) method to specify the range of feasible inputs. Furthermore, the plant was accurately simulated in THERMOFLEX to capture the generated power at different temperatures. The MC method was used to couple the ambient temperature fluctuations to the output power of the plant, modeled by THERMOFLEX. Finally, the mean value of net power for each month and the average output power of the system were obtained. The results indicated that each unit of the system generates 436.3 MW in full load operation. The average deviation of the modeling results from the actual data provided by the power plant was an estimated 3.02%. Thus, it can be concluded that this method helps achieve an estimation of the monthly and annual power of a combined-cycle power plant, which are effective indexes in the economic analysis of the system.展开更多
Biomass in forests sequesters substantial amounts of carbon;although the contribution of aboveground biomass has been extensively studied, the contribution of belowground biomass remains understudied. Investigating th...Biomass in forests sequesters substantial amounts of carbon;although the contribution of aboveground biomass has been extensively studied, the contribution of belowground biomass remains understudied. Investigating the forest biomass allocation is crucial for understanding the impacts of global change on carbon allocation and cycling.Moreover, the question of how climate factors affect biomass allocation in natural and planted forests remains unresolved. Here, we addressed this question by collecting data from 384 planted forests and 541 natural forests in China. We evaluated the direct and indirect effects of climate factors on the belowground biomass proportion(BGBP). The average BGBP was 31.09% in natural forests and was significantly higher(38.75%) in planted forests. Furthermore, we observed a significant decrease in BGBP with increasing temperature and precipitation. Climate factors, particularly those affecting soil factors, such as p H,strongly affected the BGBP in natural and planted forests. Based on our results, we propose that future studies should consider the effects of forest type(natural or planted) and soil factors on BGBP.展开更多
In conjunction with synchronous remotely sensed winds and sea surface temperature (SST), the spatiotemporal features of the Zhe-Min coastal current (ZMCC), especially responses of the ZMCC adjacent to Pingtan Isla...In conjunction with synchronous remotely sensed winds and sea surface temperature (SST), the spatiotemporal features of the Zhe-Min coastal current (ZMCC), especially responses of the ZMCC adjacent to Pingtan Island (PT) to the wintertime mon- soon relaxation in 2006 and corresponding mechanism are investigated based on the field observations. In situ data are ac- quired from Conductivity-Temperature-Depth (CTD) cruise and Bottom-Mounted Moorings (BMM), which are conducted during a comprehensive survey for the Chinese Offshore Investigation and Assessment Project in winter 2006. It is revealed that the ZMCC is well mixed vertically in winter 2006. The ZMCC (〈14℃) recedes during the relaxation of the wintertime monsoon and is accompanied by the enhanced northward shift of the warm, saline Taiwan Strait Mixed Water (TSMW, higher than 14~C and is constituted by the Taiwan Strait Warm Water and the Kuroshio Branch Water). And greatly enhanced south- ward intrusion of the ZMCC can be detected when the wintertime monsoon restores. Correspondingly, the thermal interface bounded by the ZMCC and the TSMW moves in the northwest/southeast direction, leading to periodic warm/cold reversals of the near-seabed temperature adjacent to the PT. By EOF (Empirical Orthogonal Function) analysis of the large-scale wind fields and wavelet power spectrum analysis of the water level, ocean current and the near-seabed temperature, responses of the ZMCC off the PT to wintertime monsoon relaxation are suggested to be attributed mainly to the southward propagating coast- ally trapped waves triggered by the impeding atmospheric fronts. As a result, ocean current and near-seabed temperature demonstrate significant quasi-5 d and quasi-10 d subtidal oscillations. By contrast, the onshore/offshore water accumulation resulted from Ekman advection driven by the local winds has minor contributions.展开更多
An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic tempera...An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.展开更多
The temperature dependence of the latch-up effects in a CMOS inverter based on 0.5 μm technology caused by high power microwave (HPM) is studied. The malfunction and power supply current characteristics are reveale...The temperature dependence of the latch-up effects in a CMOS inverter based on 0.5 μm technology caused by high power microwave (HPM) is studied. The malfunction and power supply current characteristics are revealed and adopted as the latch-up criteria. The thermal effect is shown and analyzed in detail. CMOS in- verters operating at high ambient temperature are confirmed to be more susceptible to HPM, which is verified by experimental results from previous literature. Besides the dependence of the latch-up triggering power P on the ambient temperature T follows the power-law equation P = ATβ. Meanwhile, the ever reported latch-up delay time characteristic is interpreted to be affected by the temperature distribution. In addition, it is found that the power threshold increases with the decrease in pulse width but the degree of change with a certain pulse width is constant at different ambient temperatures. Also, the energy absorbed to cause latch-up at a certain temperature is basically sustained at a constant value.展开更多
Heat transfer of flow melt and grain refining mechanism during melt treatment by the cooling sloping plate were investigated. The results show that the cooling sloping plate can refine not only grains of alloys but al...Heat transfer of flow melt and grain refining mechanism during melt treatment by the cooling sloping plate were investigated. The results show that the cooling sloping plate can refine not only grains of alloys but also can obviously refine pure metal. Cooling ability of the plate is the key factor that induces grain refining, the plate material and the flow amount can affect cooling rate of the melt and thus affect refining effectiveness. The cooling rate of the melt on the cooling sloping plate is much faster than that of the conventional casting process, which can reach 1000 K/s and belongs to meta-rapid solidification scope. The thickness of the temperature boundary layer is much larger than that of the velocity boundary layer on the sloping plate, but the temperature gradient is small in the temperature boundary layer. Under strong cooling action by the cooling plate, most parts of the melt on the plate surface can form undercooling, which causes continuous eruptive nucleation, this is the main grain refining mechanism, and the heterogeneous nucleation on the plate surface is a helpful supplement for the nucleation.展开更多
The small formicoxenine ant Temnothorax saxonicus was known from about 40 localities in Central Europe nesting in anorganie substrates on floor of xerothermous forests whereas investigations of 198 tree canopies in 19...The small formicoxenine ant Temnothorax saxonicus was known from about 40 localities in Central Europe nesting in anorganie substrates on floor of xerothermous forests whereas investigations of 198 tree canopies in 19 forest sites of the same region provided no indication for arboreal nesting or foraging. We present the first evidence for canopy-nesting populations of T. saxonicus on old Quercus trees in 3 sites having maximum calibrated topsoil temperatures of 17.9 ± 0.3 ℃ which were significantly (P 〈 0.007) lower than 22.8 ± 2.0 ℃ measured in 5 sites with ground-nesting populations. The thermal deficit on forest floor inhibits brood development in ground nests and caused a moving to canopy were maximum calibrated temperatures of the, now wooden, substrates are at least 26.1 ℃for the whole canopy and 30.8 ℃ in more sun-exposed spots. T. saxonieus competed here successfully with the obligatory canopy ants T. affinis and T. cortiealis. The distributional data of this rope-climbing study support former results that highest nest densities of small arboreal ants occur in temperate climate over the entire canopy mantle of single trees situated in open land or in park-like environments but occur in the top of the canopy in tree stands with high degree of canopy closure.展开更多
基金Supported by National Science and Technology Support Program of China(2011BAD16B06,2012BAD04B09)~~
文摘Freezing injury is one of the major disasters for the production of winter wheat in the North China Plain, which leads to a significant decrease of wheat yield. This study was conducted to investigate the impact of subfreezing temperature on freezing injury of various winter wheat cultivars at different sowing time. Three wheat cultivars, including Zhengmai 9023, Wanmai 48 and Wanmai 50, were sowed on 25 September and 5 October, respectively. Plant anatomy was applied to investi- gate the impact of subfreezing temperature on cells of three wheat cultivars, results showed that severe plasmolysis occurred in wheat sowed earlier suddenly encoun- tered subfreezing temperature without cold acclimation, compared with wheat sowed at proper sowing time. The degree of plasmolysis of different cultivars and tissues of wheat had significant differences and showed positive correlation with subfreezing temperature. Wanmai 50 had the highest cold resistance compared with Zhengmai 9023 and Wanmai 48, and there was no significant difference between Zhengmai 9023 and Wanmai 48. This study concluded that wheat cold resistance may be im- proved by adopting proper cultivars and sowing dates.
基金Supported by National Natural Science Foundation of China(41401559)Project of Hubei Provincial Science and Technology Department(2014CFB558)Project of Hubei Provincial Department of Education(D20141001)~~
文摘In order to more efficiently utilize gypsum to improve meadow alkali soil slightly salinized by soda and sulfate chloride, a total of 27 treatments were de- signed from the perspectives of field capacity, alkalinity, alkaline salt content, optimal irrigation, gypsum conversion, gypsum and soil treatment and improvement depth. The ions on the obtained filtrate were analyzed in terms of salts. The improving ef- ficiency of gypsum for meadow alkali soil was analyzed through comparing the con- tents of soluble salts in pre-improvement and post-improvement soil by reasoning and calculation. The results showed that, (1) the dissolved amount and conversion amount of gypsum were increased, and the soil alkalinity was decreased corre- spondingly with the increased irrigation amount. However, after reaching a certain extent, the linear relationships became unobvious gradually. Therefore, the irrigation amount should be arranged reasonably for different treatment. (2) Compared with those at low temperature, the dissolved amount of gypsum at high temperature was increased by 1.47-1.50 times, the release amount of exchangeable sodium was in- creased by 2.98-4.70 times, and the release amount of exchangeable magnesium was increased by 2.07-2.90 times. In overall, the improving efficiency of gypsum in summer was better. However, gypsum had two shortcomings in summer. First, a large amount of gypsum leaked away. Second, a large amount of exchangeable magnesium, along with exchangeable sodium, was substituted by gypsum. (3) Compared with the other two treatments, treatment B (mixing gypsum and top 20- cm soil) showed the best improving efficiency, and it was characterized by stepwise dealkalization from top to down. In addition, mixing gypsum and topsoil is more practical in the production.
文摘A combined-cycle power plant (CCPP) is broadly utilized in many countries to cover energy demand due to its higher efficiency than other conventional power plants. The performance of a CCPP is highly sensitive to ambient air temperature (AAT) and the generated power varies widely during the year with temperature fluctuations. To have an accurate estimation of power generation, it is necessary to develop a model to predict the average monthly power of a CCPP considering ambient temperature changes. In the present work, the Monte Carlo (MC) method was used to obtain the average generated power of a CCPP. The case study was a combined-cycle power plant in Tehran, Iran. The region’s existing meteorological data shows significant fluctuations in the annual ambient temperature, which severely impact the performance of the mentioned plant, causing a stochastic behavior of the output power. To cope with this stochastic nature, the probability distribution of monthly outdoor temperature for 2020 was determined using the maximum likelihood estimation (MLE) method to specify the range of feasible inputs. Furthermore, the plant was accurately simulated in THERMOFLEX to capture the generated power at different temperatures. The MC method was used to couple the ambient temperature fluctuations to the output power of the plant, modeled by THERMOFLEX. Finally, the mean value of net power for each month and the average output power of the system were obtained. The results indicated that each unit of the system generates 436.3 MW in full load operation. The average deviation of the modeling results from the actual data provided by the power plant was an estimated 3.02%. Thus, it can be concluded that this method helps achieve an estimation of the monthly and annual power of a combined-cycle power plant, which are effective indexes in the economic analysis of the system.
基金sponsored by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2022D01A213)a Scientific Research Business Fee of Universities in Xinjiang Uyghur Autonomous Region (Grant No. XJEDU2023P071)+1 种基金the Xinjiang Graduate Innovation and Entrepreneurship Project (Grant No. XJ2023G233)the Tianchi Talent Program in Xinjiang Uyghur Autonomous Region。
文摘Biomass in forests sequesters substantial amounts of carbon;although the contribution of aboveground biomass has been extensively studied, the contribution of belowground biomass remains understudied. Investigating the forest biomass allocation is crucial for understanding the impacts of global change on carbon allocation and cycling.Moreover, the question of how climate factors affect biomass allocation in natural and planted forests remains unresolved. Here, we addressed this question by collecting data from 384 planted forests and 541 natural forests in China. We evaluated the direct and indirect effects of climate factors on the belowground biomass proportion(BGBP). The average BGBP was 31.09% in natural forests and was significantly higher(38.75%) in planted forests. Furthermore, we observed a significant decrease in BGBP with increasing temperature and precipitation. Climate factors, particularly those affecting soil factors, such as p H,strongly affected the BGBP in natural and planted forests. Based on our results, we propose that future studies should consider the effects of forest type(natural or planted) and soil factors on BGBP.
基金supported by National Natural Science Foundation of China(Grant Nos.41176031 and 40806013)Chinese Offshore Physical Oceanography and Marine Meteorology Investigation and Assessment Project(Grant No.908-ZC-I-01)National Basic Research Program of China(Grant No:.2011CB403504).
文摘In conjunction with synchronous remotely sensed winds and sea surface temperature (SST), the spatiotemporal features of the Zhe-Min coastal current (ZMCC), especially responses of the ZMCC adjacent to Pingtan Island (PT) to the wintertime mon- soon relaxation in 2006 and corresponding mechanism are investigated based on the field observations. In situ data are ac- quired from Conductivity-Temperature-Depth (CTD) cruise and Bottom-Mounted Moorings (BMM), which are conducted during a comprehensive survey for the Chinese Offshore Investigation and Assessment Project in winter 2006. It is revealed that the ZMCC is well mixed vertically in winter 2006. The ZMCC (〈14℃) recedes during the relaxation of the wintertime monsoon and is accompanied by the enhanced northward shift of the warm, saline Taiwan Strait Mixed Water (TSMW, higher than 14~C and is constituted by the Taiwan Strait Warm Water and the Kuroshio Branch Water). And greatly enhanced south- ward intrusion of the ZMCC can be detected when the wintertime monsoon restores. Correspondingly, the thermal interface bounded by the ZMCC and the TSMW moves in the northwest/southeast direction, leading to periodic warm/cold reversals of the near-seabed temperature adjacent to the PT. By EOF (Empirical Orthogonal Function) analysis of the large-scale wind fields and wavelet power spectrum analysis of the water level, ocean current and the near-seabed temperature, responses of the ZMCC off the PT to wintertime monsoon relaxation are suggested to be attributed mainly to the southward propagating coast- ally trapped waves triggered by the impeding atmospheric fronts. As a result, ocean current and near-seabed temperature demonstrate significant quasi-5 d and quasi-10 d subtidal oscillations. By contrast, the onshore/offshore water accumulation resulted from Ekman advection driven by the local winds has minor contributions.
基金supported by the National Natural Science Foundation of China (Grant No. 51076147)
文摘An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.
基金Project supported by the National Natural Science Foundation of China(No.60776034)the State Key Development Program for Basic Research of China(No.2014CC339900)
文摘The temperature dependence of the latch-up effects in a CMOS inverter based on 0.5 μm technology caused by high power microwave (HPM) is studied. The malfunction and power supply current characteristics are revealed and adopted as the latch-up criteria. The thermal effect is shown and analyzed in detail. CMOS in- verters operating at high ambient temperature are confirmed to be more susceptible to HPM, which is verified by experimental results from previous literature. Besides the dependence of the latch-up triggering power P on the ambient temperature T follows the power-law equation P = ATβ. Meanwhile, the ever reported latch-up delay time characteristic is interpreted to be affected by the temperature distribution. In addition, it is found that the power threshold increases with the decrease in pulse width but the degree of change with a certain pulse width is constant at different ambient temperatures. Also, the energy absorbed to cause latch-up at a certain temperature is basically sustained at a constant value.
基金financially supported by the National Natural Science Foundation of China (Nos. 51034002 and 50974038)the Fok Ying Tong Education Foundation (No. 132002)National Basic Research Program of China (973 program)(No.2011CB610405)
文摘Heat transfer of flow melt and grain refining mechanism during melt treatment by the cooling sloping plate were investigated. The results show that the cooling sloping plate can refine not only grains of alloys but also can obviously refine pure metal. Cooling ability of the plate is the key factor that induces grain refining, the plate material and the flow amount can affect cooling rate of the melt and thus affect refining effectiveness. The cooling rate of the melt on the cooling sloping plate is much faster than that of the conventional casting process, which can reach 1000 K/s and belongs to meta-rapid solidification scope. The thickness of the temperature boundary layer is much larger than that of the velocity boundary layer on the sloping plate, but the temperature gradient is small in the temperature boundary layer. Under strong cooling action by the cooling plate, most parts of the melt on the plate surface can form undercooling, which causes continuous eruptive nucleation, this is the main grain refining mechanism, and the heterogeneous nucleation on the plate surface is a helpful supplement for the nucleation.
文摘The small formicoxenine ant Temnothorax saxonicus was known from about 40 localities in Central Europe nesting in anorganie substrates on floor of xerothermous forests whereas investigations of 198 tree canopies in 19 forest sites of the same region provided no indication for arboreal nesting or foraging. We present the first evidence for canopy-nesting populations of T. saxonicus on old Quercus trees in 3 sites having maximum calibrated topsoil temperatures of 17.9 ± 0.3 ℃ which were significantly (P 〈 0.007) lower than 22.8 ± 2.0 ℃ measured in 5 sites with ground-nesting populations. The thermal deficit on forest floor inhibits brood development in ground nests and caused a moving to canopy were maximum calibrated temperatures of the, now wooden, substrates are at least 26.1 ℃for the whole canopy and 30.8 ℃ in more sun-exposed spots. T. saxonieus competed here successfully with the obligatory canopy ants T. affinis and T. cortiealis. The distributional data of this rope-climbing study support former results that highest nest densities of small arboreal ants occur in temperate climate over the entire canopy mantle of single trees situated in open land or in park-like environments but occur in the top of the canopy in tree stands with high degree of canopy closure.