The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic...The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient.展开更多
In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gra...In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gradient.Typically,problems of thermal convection in tilted porous media saturated with a liquid are studied by assuming constant different temperatures at the boundaries of the layer,which prevent these systems from supporting conductive(non-convective)states.The boundary conditions considered in the present work allow a conductive state and are representative of typical geological applications.In an earlier work,we carried out a linear stability analysis of the conductive state.It was shown that at any layer tilt angles,the most dangerous type of disturbances are longitudinal rolls.Moreover,a non-zero velocity component exists in z-direction.In the present work,threedimensional non-linear convection regimes are studied.The original three-dimensional problem is reduced to two-dimensional one with an analytical expression for the velocity z-component v_(z)=v_(z)(x,y).It is shown that the critical Rayleigh number values obtained through numerical solutions of the obtained 2D problem by a finite difference method for different layer inclination angles,are in a good agreement with those predicted by the linear theory.The number of convective rolls realized in nonlinear calculations also fits the linear theory predictions for a given cavity geometry.Calculations carried out at low supercriticalities show that a direct bifurcation takes place.With increasing supercriticality,no transitions to other convective regimes are detected.The situation studied in this problem can be observed in oil-bearing rock formations under the influence of a geothermal temperature gradient,where the ensuing fluid convection can affect the distribution of oil throughout the layer.展开更多
Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynam...Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynamic responses under different temperature gradients of the slab are theoretically investigated in this work.Design/methodology/approach-Considering the moving train,the temperature gradient of the slab,and the gravity of the slab track,a dynamic model for a high-speed train that runs along the CRTS Ⅲ slab track on subgrade is developed by a nonlinear coupled way in Abaqus.Findings-The results are as follows:(1)The upward transmission of the periodic deformation of the slab causes periodic track irregularity.(2)Because of the geometric constraint of limiting structures,the maximum bending stresses of the slab occur near the end of the slab under positive temperature gradients,but in the middle of the slab under negative temperature gradients.(3)The periodic deformation of the slab can induce periodic changes in the interlayer stiffness and contact status,leading to a large vibration of the slab.Because of the vibration-reduction capacity of the fastener and the larger mass of the concrete base,the accelerations of both the slab and concrete base are far less than the acceleration of the rail.Originality/value-This study reveals the influence mechanism of temperature gradient-induced periodic deformation in the dynamic responses of the train-track system,and it also provides a guide for the safe service of CRTS Ⅲ slab track.展开更多
In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities ...In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities that increase the wheel-rail impact of high-speed vehicles and accelerate track structure damage.Therefore,it is necessary to study the dynamic contact relationship between the composite slab and the base plate during vehicle running.The results of the study show that:1)Under the influence of temperature gradients,the composite slab tends to deform elliptically.With a positive temperature gradient,the middle part of the track slab bulges upward,causing the slab to be supported by its four corners.Conversely,with a negative temperature gradient,the four corners of the track slab bulge upward,resulting in the slab being supported by its center.2)Temperature gradients can lead to separation between the composite slab and the base plate,reducing the contact area between layers.During vehicle running,the contact area between layers gradually increases,but the separation cannot be completely closed.3)The temperature gradient significantly affects the vertical displacement of the track.The vertical displacement in the middle of the slab increases with a positive temperature gradient.In contrast,the vertical displacement at the ends of the slab increases with a negative temperature gradient.4)The stress of self-compacting concrete at the side position significantly increases under a positive temperature gradient,with the vertical stress increasing by 2.7 times when the temperature gradient increases from 0 to 90℃·m^(-1).展开更多
A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was ind...A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was induced by the variation of the axial section of sample, which was heated by the direct current. The variation of continuous cooling rates on the treated sample was realized by using the end quenching method. The microstructural evolution and mechanical properties under different heat treatment conditions were evaluated. The results show that the pseudo-spinodal decomposition of the alloy occurs at(617±1) ?C, and the size of the precipitated α phase is around 300 nm. Moreover, the highest microhardness is obtained after the heat treatment at the pseudo-spinodal decomposition temperature for 4 h. These indicate that the high throughput method is efficient and fast to determine the phase transformation temperature and corresponding microstructural evolution of alloys.展开更多
The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional sol...The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional solidification rate from 50 to 800 μm·s-1, both the primary and the secondary dendrite arm spacings of the alloy decrease gradually, and the dendrite morphologies transform from coarse dendrite to superfine dendrite. The sizes of all precipitates in the superalloy decrease gradually. The morphology of γ' precipitate changes from cube to sphere shape and distributes uniformly in both dendrite core and interdendritic regions. MC carbide morphology changes from coarse block to fine-strip and then to Chinese-script and mainly consists of Ta, W, and Hf elements. The γ-γ' eutectic fraction increases firstly and then decreases, and similar regularity is also found for the variation of segregation ratio of elements.展开更多
In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction s...In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction system was established and the sulfidation thermodynamics of lead and zinc carbonate was calculated with the software HSC 5.0. The effects of roasting temperature,molar ratio of sulphur to lead and zinc carbonate and reaction time in the first step roasting, and holding temperature and time in the second roasting on the sulfidation extent were studied at a laboratory-scale. The experimental results show that the sulfidation extents of lead and zinc are 96.50% and 97.29% under the optimal conditions, respectively, and the artificial galena, sphalerite and wurtzite were formed. By the novel sulfidizing process, it is expected that the sulphides can be recovered by conventional flotation technology.展开更多
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit...A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.展开更多
Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built u...Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built under outdoor conditions in Chengdu area; the statistical characteristic of temperature gradient in track slab and the relationship between temperature gradient and surface air temperature were tested and analyzed. The results show that the track slab temperature gradient will vary periodically according to the surface air temperature, and show a clear nonlinearity along the height direction. The temperature gradient distribution is extremely uneven: the temperature gradient in the top part of the track slab is larger than that in the bottom part; the most frequently occurring temperature gradient of the track slab is around -3.5 ℃/m and more than 75 % locates in the level -10 to 10 ℃/m; concrete with a relatively good heat exchange condition with the surrounding air has a narrower band distribution. In addition, the frequency distribution histogram should exclude the time zone from 00:00 to 06:00 because there is almost no traffic in this period. The amplitude of track slab temperature variation is obviously lower than that of the air temperature variation, and the former is approximately linear with the latter.展开更多
The temperature distributions of a prestressed concrete box girder bridge under the effect of cold wave processes were analyzed. The distributions were found different from those under the effect of solar radiation or...The temperature distributions of a prestressed concrete box girder bridge under the effect of cold wave processes were analyzed. The distributions were found different from those under the effect of solar radiation or nighttime radiation cooling and should not be simplified as one dimensional. A temperature predicting model that can accurately predict temperatures over the cross section of the concrete box girder was developed. On the basis of the analytical model, a two-dimensional temperature gradient model was proposed and a parametric study that considered meteorological factors was performed. The results of sensitivity analysis show that the cold wave with shorter duration and more severe temperature drop may cause more unfavorable influences on the concrete box girder bridge. Finally, the unrestrained linear curvatures, self-equilibrating stresses and bending stresses when considering the frame action of the cross section, were derived from the proposed temperature gradient model and current code provisions, respectively. Then, a comparison was made between the value calculated against proposed model and several current specifications. The results show that the cold wave may cause more unfavorable effect on the concrete box girder bridge, especially on the large concrete box girder bridge. Therefore, it is necessary to consider the thermal effect caused by cold wave during the design stage.展开更多
Temperature gradient and cooling rate have an obvious effect on formation of methane hydrate. The process for formation of methane hydrate in coarse sand is monitored to tmderstand the relationship between temperature...Temperature gradient and cooling rate have an obvious effect on formation of methane hydrate. The process for formation of methane hydrate in coarse sand is monitored to tmderstand the relationship between temperature gradient and cooling rate and nucleation, growth and distribution of methane hydrate by using the electrical resistivity method. The results show that the change of resistivity can better reflect the nucleation and growth and distribution of methane hydrate. Temperature gradient promotes the nucleation, formation, and formation rate of methane hydrate. At a temperature gradient of 0.11℃/cm, the rate of methane hydrate formation and saturation reaches a maximum. Cooling rate has little effect on the methane hydrate formation process. Judging from the outcome of final spatial distribution of methane hydrate, the cooling rate has an obvious but irregular effect in coarse sand. The effect of tempera^re gradient on distribution of methane hydrate in coarse sand is less than that of cooling rate. At a temperature gradient of 0.07℃/cm, methane hydrate is distributed uniformly in the sample. If the temperature gradient is higher or lower than this value, the hydrate is enriched in the upper layer of sample.展开更多
The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by pha...The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by phase-field simulation, and the diffusion couples are produced by the initial aged spinodal alloys with different compositions. Temporal composition evolution and volume fraction of the separated phase indicate the element diffusion direction through the interface under the temperature gradient. The increased temperature gradient induces a wide single-phase region on two sides of the interface.The uphill diffusion proceeds through the interface, no matter whether the diffusion direction is up or down with respect to the temperature gradient. For an alloy with short initial aging time, phase transformation accompanying the interdiffusion results in the straight interface with the single-phase regions on both sides. Compared with the temperature gradient,composition difference of diffusion couple and initial aging time of the alloy show greater effects on diffusion and interface microstructure.展开更多
Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gra...Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gradients is analyzed thermodynamically based on classical nucleation theory(CNT). Given that the free energy barrier for nucleation is dependent on temperature, different from a uniform temperature usually used in CNT, an assumption of linear temperature distribution in the ice nucleus was made and taken into consideration in analysis. The critical radius of the ice nucleus for nucleation and the corresponding nucleation model in the presence of a temperature gradient were obtained. It is observed that the critical radius is determined not only by the degree of supercooling, the only dependence in CNT, but also by the temperature gradient and even the Young's contact angle. Effects of temperature gradient on the change in free energy, critical radius,nucleation barrier and nucleation rate with different contact angles and degrees of supercooling are illustrated successively.The results show that a temperature gradient will increase the nucleation barrier and decrease the nucleation rate, particularly in the cases of large contact angle and low degree of supercooling. In addition, there is a critical temperature gradient for a given degree of supercooling and contact angle, at the higher of which the nucleation can be suppressed completely.展开更多
Laser forraing is a new flexible and dieless forming technique. To achieve the high accuracy forming, the temperature gradient mechanism (TGM) is studied. In the analysis of TGM, the plate bends about x-axis and abo...Laser forraing is a new flexible and dieless forming technique. To achieve the high accuracy forming, the temperature gradient mechanism (TGM) is studied. In the analysis of TGM, the plate bends about x-axis and about y-axis as well. To understand the deformation trend, the numerical simulation of deformation of plate is conducted by choosing different laser powers, laser spot diameters, scanning speeds, lengths, widths and thicknesses. From the results of simulation, it can be seen that the laser spot diameter, the scanning speed, laser power and thickness of plate play dominant roles in the laser forming process. However, the bending angles αx and αy show different trends with the variation of parameters. In addition, in comparison with above four parameters, the effect of length and width of plate on the beading angle may be neglected, but their effects are significant for the bending radius R.展开更多
Unidirectional freezing experiments under overburden pressure were carried out, in order to study the driving force of mois- ture migration of remodeled clay during freezing, through improving the indoor moisture migr...Unidirectional freezing experiments under overburden pressure were carried out, in order to study the driving force of mois- ture migration of remodeled clay during freezing, through improving the indoor moisture migration test device. Overburden pressure and cooling temperature with the same circumstance were changed to determine the influence on water migration of a single factor. Results show that water content increases above the location of the final ice lenses and decreases below the loca- tion. When the overburden pressure increases, water intake gradually decreases and the time starting to absorb water is delayed. The location of the final ice lens is not sensitive to overburden pressure but influenced by the temperature boundary. The im- pact of overburden pressure and maximum temperature is not obvious. Freezing rate is not sensitive to overburden pressure but influenced by temperature, and it increases when the cold temperature decreases. Frost heave and water intake flow in- creases with increasing time and rises up to a peak value, and then decreases. During the freezing process, water intake flow increases when freezing rate decreases. Water intake flow decreases when the overburden pressure increases when the cold temperature decreases. Finally, we expanded the segregation theory, and proposed a model to describe the relationship between water intake flow and freezing rate.展开更多
As a result of the nonlinear effect, acoustic streaming has been widely used for increasing the transport coefficient or driving a rotor, for example, in resonant cavities and non-contact ultrasonic motors. It has bee...As a result of the nonlinear effect, acoustic streaming has been widely used for increasing the transport coefficient or driving a rotor, for example, in resonant cavities and non-contact ultrasonic motors. It has been demonstrated by experiments that a temperature gradient transverse to the wave propagating direction can significantly increase the velocity of the streaming flows in resonant cavities. To check whether the transverse temperature gradient can also increase the working velocity of acoustic streaming-driven motors, we investigate this issue by numerically solving the hydrodynamic equations. It is found that the velocity of the rotor only weakly depends on the transverse temperature gradient, e.g., even with a temperature difference of 40℃ between the rotor and the stator, the velocity increases only -8.8%.展开更多
To simulate the FPSO-iceberg collision process more accurately, an elastic-plastic iceberg material model considering temperature gradient effects is proposed and applied. The model behaves linearly elastic until it r...To simulate the FPSO-iceberg collision process more accurately, an elastic-plastic iceberg material model considering temperature gradient effects is proposed and applied. The model behaves linearly elastic until it reaches the ‘Tsai-Wu’ yield surfaces, which are a series of concentric elliptical curves of different sizes. Decreasing temperature results in a large yield surface. Failure criteria, based on the influence of accumulated plastic strain and hydrostatic pressure, are built into the model. Based on published experimental data on the relationship between depth and temperature in icebergs, three typical iceberg temperature profiles are proposed. According to these, ice elements located at different depths have different temperatures. The model is incorporated into LS-DYNA using a user-defined subroutine and applied to a simulation of FPSO collisions with different types of icebergs. Simulated area-pressure curves are compared with design codes to validate the iceberg model. The influence of iceberg shape and temperature on the collision process is analyzed. It is indicated that FPSO structural damage not only depends on the relative strength between the iceberg and the structure, but also depends on the local shape of the iceberg.展开更多
The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2 laser were carried out to study the effects of processing parameters (scanning velocity, output power of...The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2 laser were carried out to study the effects of processing parameters (scanning velocity, output power of laser) on the growth direction of microstructure in the molten pool and cellular spacing selection under the condition of ultra-high temperature gradient and rapid directional solidification. The experimental results show that the growth direction of microstructure is strongly affected by laser processing parameters. The ultra-high temperature gradient directional solidification can be realized on the surface of samples during laser surface remelting by controlling laser processing parameters, the temperature gradient and growth velocity can reach 106 K/m and 24.1 mm/s, respectively, and the solidification microstructure in the center of the molten pool grows along the laser beam scanning direction. There exists a distribution range of cellular spacings under the laser rapid solidification conditions, and the average spacing decreases with increasing of growth rate. The maximum, λmax, minimum, λmin, and average primary spacing, A, as functions of growth rate, Vb, can be given by,λmax=12.54Vb-0.61, λmin=4.47 Vb-0.52, λ=9.09Vb-0.62, respectively. The experimental results are compared with the current Hunt-Lu model for rapid cellular/dendritic growth, and a good agreement is found.展开更多
Based on the car front-wheel-hub forging forming process of numerical simulation, the temperature gradient expression of forging model cavity near the surface layer was got ten, which illustrates that the forging temp...Based on the car front-wheel-hub forging forming process of numerical simulation, the temperature gradient expression of forging model cavity near the surface layer was got ten, which illustrates that the forging temperature gradient is related to forging die materials thermal conductivity, specific heat and impact speed, and the correlation coefficient is 0.97. Under the different thermal conductivity, heat capacity and forging speed, the temperature gradient was compared with each other. The paper obtained the relevant laws, which illustrates the temperature gradient relates to these three parameters in a sequence of thermal conductivity 〉 impact speed〉 specific heat capacity. To reduce thermal stress in the near-surface layer of hot forging cavity, the material with greater thermal conductivity coefficient and specific heat capacity should be used.展开更多
During heat treatment or mechanical processing,most polycrystalline materials experience grain growth,which significantly affects their mechanical properties.Microstructure simulation on a mesoscopic scale is an impor...During heat treatment or mechanical processing,most polycrystalline materials experience grain growth,which significantly affects their mechanical properties.Microstructure simulation on a mesoscopic scale is an important way of studying grain growth.A key research focus of this type of method has long been how to efficiently and accurately simulate the grain growth caused by a non-uniform temperature field with temperature gradients.In this work,we propose an improved 3D Monte Carlo Potts(MCP)method to quantitatively study the relationship between non-uniform temperature fields and final grain morphologies.Properties of the aluminum alloy AA6061-T6 are used to establish a trial calculation model and to verify the algorithms with existing experimental results in literature.The detailed grain growth process of the 6061-T6 aluminum alloy under different temperature fields is then obtained,and grain morphologies at various positions are analyzed.Results indicate that while absolute temperature and duration time are the primary factors determining the final grain size,the temperature gradient also has strong influence on the grain morphologies.The relationships between temperatures,temperature gradients and grain growth process have been established.The proposed MCP algorithm can be applied to different types of materials when the proper parameters are used.展开更多
基金supported by National Natural Science Foundation of China(Nos.U1967206 and 12275071)National Key R&D Program of China(No.2017YFE0301201)。
文摘The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient.
基金financial support from the Ministry of Science and Higher Education of the Russian Federation(Topic No.121031700169-1).
文摘In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gradient.Typically,problems of thermal convection in tilted porous media saturated with a liquid are studied by assuming constant different temperatures at the boundaries of the layer,which prevent these systems from supporting conductive(non-convective)states.The boundary conditions considered in the present work allow a conductive state and are representative of typical geological applications.In an earlier work,we carried out a linear stability analysis of the conductive state.It was shown that at any layer tilt angles,the most dangerous type of disturbances are longitudinal rolls.Moreover,a non-zero velocity component exists in z-direction.In the present work,threedimensional non-linear convection regimes are studied.The original three-dimensional problem is reduced to two-dimensional one with an analytical expression for the velocity z-component v_(z)=v_(z)(x,y).It is shown that the critical Rayleigh number values obtained through numerical solutions of the obtained 2D problem by a finite difference method for different layer inclination angles,are in a good agreement with those predicted by the linear theory.The number of convective rolls realized in nonlinear calculations also fits the linear theory predictions for a given cavity geometry.Calculations carried out at low supercriticalities show that a direct bifurcation takes place.With increasing supercriticality,no transitions to other convective regimes are detected.The situation studied in this problem can be observed in oil-bearing rock formations under the influence of a geothermal temperature gradient,where the ensuing fluid convection can affect the distribution of oil throughout the layer.
基金supported by National Key R&D Program of China[Grant No.2022YFB2603400]R&D Project of China State Railway Group Corporation Limited[Grant No.P2021G053]R&D Project of China Academy of Railway Science Corporation Limited[Grant No.2023YJ200].
文摘Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynamic responses under different temperature gradients of the slab are theoretically investigated in this work.Design/methodology/approach-Considering the moving train,the temperature gradient of the slab,and the gravity of the slab track,a dynamic model for a high-speed train that runs along the CRTS Ⅲ slab track on subgrade is developed by a nonlinear coupled way in Abaqus.Findings-The results are as follows:(1)The upward transmission of the periodic deformation of the slab causes periodic track irregularity.(2)Because of the geometric constraint of limiting structures,the maximum bending stresses of the slab occur near the end of the slab under positive temperature gradients,but in the middle of the slab under negative temperature gradients.(3)The periodic deformation of the slab can induce periodic changes in the interlayer stiffness and contact status,leading to a large vibration of the slab.Because of the vibration-reduction capacity of the fastener and the larger mass of the concrete base,the accelerations of both the slab and concrete base are far less than the acceleration of the rail.Originality/value-This study reveals the influence mechanism of temperature gradient-induced periodic deformation in the dynamic responses of the train-track system,and it also provides a guide for the safe service of CRTS Ⅲ slab track.
基金supported by the National Natural Science Foundation of China(Grant No.52278466)the Project of China Academy of Railway Sciences Co.,Ltd(Grant No.2023YJ194).The useful contribution and discussions from project partners are also acknowledged.
文摘In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities that increase the wheel-rail impact of high-speed vehicles and accelerate track structure damage.Therefore,it is necessary to study the dynamic contact relationship between the composite slab and the base plate during vehicle running.The results of the study show that:1)Under the influence of temperature gradients,the composite slab tends to deform elliptically.With a positive temperature gradient,the middle part of the track slab bulges upward,causing the slab to be supported by its four corners.Conversely,with a negative temperature gradient,the four corners of the track slab bulge upward,resulting in the slab being supported by its center.2)Temperature gradients can lead to separation between the composite slab and the base plate,reducing the contact area between layers.During vehicle running,the contact area between layers gradually increases,but the separation cannot be completely closed.3)The temperature gradient significantly affects the vertical displacement of the track.The vertical displacement in the middle of the slab increases with a positive temperature gradient.In contrast,the vertical displacement at the ends of the slab increases with a negative temperature gradient.4)The stress of self-compacting concrete at the side position significantly increases under a positive temperature gradient,with the vertical stress increasing by 2.7 times when the temperature gradient increases from 0 to 90℃·m^(-1).
基金Project(2014CB644002)supported by the National Basic Research and Development Project of ChinaProject(2015CX004)supported by the Innovation-driven Plan in Central South University,China
文摘A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was induced by the variation of the axial section of sample, which was heated by the direct current. The variation of continuous cooling rates on the treated sample was realized by using the end quenching method. The microstructural evolution and mechanical properties under different heat treatment conditions were evaluated. The results show that the pseudo-spinodal decomposition of the alloy occurs at(617±1) ?C, and the size of the precipitated α phase is around 300 nm. Moreover, the highest microhardness is obtained after the heat treatment at the pseudo-spinodal decomposition temperature for 4 h. These indicate that the high throughput method is efficient and fast to determine the phase transformation temperature and corresponding microstructural evolution of alloys.
基金financially supported by National Natural Science Foundation of China(No.50827102)the Scientific Research Foundation for Ph.D.,Northwest A&F University(No.Z109021103)+1 种基金the Special Fund for Basic Scientific Research of Central Colleges,Northwest A&F University(No.Z109021114)the Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201220)
文摘The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional solidification rate from 50 to 800 μm·s-1, both the primary and the secondary dendrite arm spacings of the alloy decrease gradually, and the dendrite morphologies transform from coarse dendrite to superfine dendrite. The sizes of all precipitates in the superalloy decrease gradually. The morphology of γ' precipitate changes from cube to sphere shape and distributes uniformly in both dendrite core and interdendritic regions. MC carbide morphology changes from coarse block to fine-strip and then to Chinese-script and mainly consists of Ta, W, and Hf elements. The γ-γ' eutectic fraction increases firstly and then decreases, and similar regularity is also found for the variation of segregation ratio of elements.
基金Project(51204210)supported by the National Natural Science Foundation of ChinaProject(2011AA061001)supported by the High-Tech Research and Development Program of ChinaProject(2012BAC12B04)supported by the National Science&Technology During the12th Five-Year Plan Period,China
文摘In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction system was established and the sulfidation thermodynamics of lead and zinc carbonate was calculated with the software HSC 5.0. The effects of roasting temperature,molar ratio of sulphur to lead and zinc carbonate and reaction time in the first step roasting, and holding temperature and time in the second roasting on the sulfidation extent were studied at a laboratory-scale. The experimental results show that the sulfidation extents of lead and zinc are 96.50% and 97.29% under the optimal conditions, respectively, and the artificial galena, sphalerite and wurtzite were formed. By the novel sulfidizing process, it is expected that the sulphides can be recovered by conventional flotation technology.
基金Project(2015CB057701)supported by the National Basic Research Program of ChinaProject(51308071)supported by the National Natural Science Foundation of China+3 种基金Project(13JJ4057)supported by Natural Science Foundation of Hunan Province,ChinaProject(201408430155)supported by the Foundation of China Scholarship CouncilProject(2015319825120)supported by the Traffic Department of Applied Basic Research,ChinaProject(12K076)supported by the Open Foundation of Innovation Platform in Hunan Provincial Universities,China
文摘A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.
基金supported by the National Key Basic Research Program of China (973 Program) (2013CB036202)the National Natural Science Foundation of China (51008258)Fundamental Research Funds for the Central Universities (SWJTU12CX065)
文摘Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built under outdoor conditions in Chengdu area; the statistical characteristic of temperature gradient in track slab and the relationship between temperature gradient and surface air temperature were tested and analyzed. The results show that the track slab temperature gradient will vary periodically according to the surface air temperature, and show a clear nonlinearity along the height direction. The temperature gradient distribution is extremely uneven: the temperature gradient in the top part of the track slab is larger than that in the bottom part; the most frequently occurring temperature gradient of the track slab is around -3.5 ℃/m and more than 75 % locates in the level -10 to 10 ℃/m; concrete with a relatively good heat exchange condition with the surrounding air has a narrower band distribution. In addition, the frequency distribution histogram should exclude the time zone from 00:00 to 06:00 because there is almost no traffic in this period. The amplitude of track slab temperature variation is obviously lower than that of the air temperature variation, and the former is approximately linear with the latter.
基金Project(08Y60) supported by the Traffic Science’s Research Planning of Jiangsu Province,China
文摘The temperature distributions of a prestressed concrete box girder bridge under the effect of cold wave processes were analyzed. The distributions were found different from those under the effect of solar radiation or nighttime radiation cooling and should not be simplified as one dimensional. A temperature predicting model that can accurately predict temperatures over the cross section of the concrete box girder was developed. On the basis of the analytical model, a two-dimensional temperature gradient model was proposed and a parametric study that considered meteorological factors was performed. The results of sensitivity analysis show that the cold wave with shorter duration and more severe temperature drop may cause more unfavorable influences on the concrete box girder bridge. Finally, the unrestrained linear curvatures, self-equilibrating stresses and bending stresses when considering the frame action of the cross section, were derived from the proposed temperature gradient model and current code provisions, respectively. Then, a comparison was made between the value calculated against proposed model and several current specifications. The results show that the cold wave may cause more unfavorable effect on the concrete box girder bridge, especially on the large concrete box girder bridge. Therefore, it is necessary to consider the thermal effect caused by cold wave during the design stage.
基金supported by the Chinese Academy of Sciences Action-plan for Western Project(No.KZCX2-XB3-03)the National Natural Science Foundation of China(No.41001038,51266005)the National Natural Science Foundation of China(No.41101070,1106ZBB007)
文摘Temperature gradient and cooling rate have an obvious effect on formation of methane hydrate. The process for formation of methane hydrate in coarse sand is monitored to tmderstand the relationship between temperature gradient and cooling rate and nucleation, growth and distribution of methane hydrate by using the electrical resistivity method. The results show that the change of resistivity can better reflect the nucleation and growth and distribution of methane hydrate. Temperature gradient promotes the nucleation, formation, and formation rate of methane hydrate. At a temperature gradient of 0.11℃/cm, the rate of methane hydrate formation and saturation reaches a maximum. Cooling rate has little effect on the methane hydrate formation process. Judging from the outcome of final spatial distribution of methane hydrate, the cooling rate has an obvious but irregular effect in coarse sand. The effect of tempera^re gradient on distribution of methane hydrate in coarse sand is less than that of cooling rate. At a temperature gradient of 0.07℃/cm, methane hydrate is distributed uniformly in the sample. If the temperature gradient is higher or lower than this value, the hydrate is enriched in the upper layer of sample.
基金Project supported by the National Natural Science Foundation of China(Grant No.51571122)the Fundamental Research Funds for the Central UniversitiesChina(Grant No.30920130121012)
文摘The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by phase-field simulation, and the diffusion couples are produced by the initial aged spinodal alloys with different compositions. Temporal composition evolution and volume fraction of the separated phase indicate the element diffusion direction through the interface under the temperature gradient. The increased temperature gradient induces a wide single-phase region on two sides of the interface.The uphill diffusion proceeds through the interface, no matter whether the diffusion direction is up or down with respect to the temperature gradient. For an alloy with short initial aging time, phase transformation accompanying the interdiffusion results in the straight interface with the single-phase regions on both sides. Compared with the temperature gradient,composition difference of diffusion couple and initial aging time of the alloy show greater effects on diffusion and interface microstructure.
文摘Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gradients is analyzed thermodynamically based on classical nucleation theory(CNT). Given that the free energy barrier for nucleation is dependent on temperature, different from a uniform temperature usually used in CNT, an assumption of linear temperature distribution in the ice nucleus was made and taken into consideration in analysis. The critical radius of the ice nucleus for nucleation and the corresponding nucleation model in the presence of a temperature gradient were obtained. It is observed that the critical radius is determined not only by the degree of supercooling, the only dependence in CNT, but also by the temperature gradient and even the Young's contact angle. Effects of temperature gradient on the change in free energy, critical radius,nucleation barrier and nucleation rate with different contact angles and degrees of supercooling are illustrated successively.The results show that a temperature gradient will increase the nucleation barrier and decrease the nucleation rate, particularly in the cases of large contact angle and low degree of supercooling. In addition, there is a critical temperature gradient for a given degree of supercooling and contact angle, at the higher of which the nucleation can be suppressed completely.
文摘Laser forraing is a new flexible and dieless forming technique. To achieve the high accuracy forming, the temperature gradient mechanism (TGM) is studied. In the analysis of TGM, the plate bends about x-axis and about y-axis as well. To understand the deformation trend, the numerical simulation of deformation of plate is conducted by choosing different laser powers, laser spot diameters, scanning speeds, lengths, widths and thicknesses. From the results of simulation, it can be seen that the laser spot diameter, the scanning speed, laser power and thickness of plate play dominant roles in the laser forming process. However, the bending angles αx and αy show different trends with the variation of parameters. In addition, in comparison with above four parameters, the effect of length and width of plate on the beading angle may be neglected, but their effects are significant for the bending radius R.
基金supported by the National Basic Research Program("973") of China (2012CB026102)the National Natural Science Foundation of China (No.41271080 and No.41230630)the open fund of Qinghai Research and Observation Base, Key Laboratory of Highway Construction and Maintenance Technology in Permafrost Region Ministry of Transport, PRC(2012-12-4)
文摘Unidirectional freezing experiments under overburden pressure were carried out, in order to study the driving force of mois- ture migration of remodeled clay during freezing, through improving the indoor moisture migration test device. Overburden pressure and cooling temperature with the same circumstance were changed to determine the influence on water migration of a single factor. Results show that water content increases above the location of the final ice lenses and decreases below the loca- tion. When the overburden pressure increases, water intake gradually decreases and the time starting to absorb water is delayed. The location of the final ice lens is not sensitive to overburden pressure but influenced by the temperature boundary. The im- pact of overburden pressure and maximum temperature is not obvious. Freezing rate is not sensitive to overburden pressure but influenced by temperature, and it increases when the cold temperature decreases. Frost heave and water intake flow in- creases with increasing time and rises up to a peak value, and then decreases. During the freezing process, water intake flow increases when freezing rate decreases. Water intake flow decreases when the overburden pressure increases when the cold temperature decreases. Finally, we expanded the segregation theory, and proposed a model to describe the relationship between water intake flow and freezing rate.
基金Supported by the National Natural Science Foundation of China under Grant No 10874083
文摘As a result of the nonlinear effect, acoustic streaming has been widely used for increasing the transport coefficient or driving a rotor, for example, in resonant cavities and non-contact ultrasonic motors. It has been demonstrated by experiments that a temperature gradient transverse to the wave propagating direction can significantly increase the velocity of the streaming flows in resonant cavities. To check whether the transverse temperature gradient can also increase the working velocity of acoustic streaming-driven motors, we investigate this issue by numerically solving the hydrodynamic equations. It is found that the velocity of the rotor only weakly depends on the transverse temperature gradient, e.g., even with a temperature difference of 40℃ between the rotor and the stator, the velocity increases only -8.8%.
基金Supported by the National Natural Science Foundation of China under Grant No. 51239007 The work contained in this paper is part of a joint-research project between the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University and the Department of Shipping and Marine Technology at Chalmers University of Technology. The authors would like to thank Dr. Jonas Ringsberg at Chalmers University of Technology for his discussions and suggestions for this paper.
文摘To simulate the FPSO-iceberg collision process more accurately, an elastic-plastic iceberg material model considering temperature gradient effects is proposed and applied. The model behaves linearly elastic until it reaches the ‘Tsai-Wu’ yield surfaces, which are a series of concentric elliptical curves of different sizes. Decreasing temperature results in a large yield surface. Failure criteria, based on the influence of accumulated plastic strain and hydrostatic pressure, are built into the model. Based on published experimental data on the relationship between depth and temperature in icebergs, three typical iceberg temperature profiles are proposed. According to these, ice elements located at different depths have different temperatures. The model is incorporated into LS-DYNA using a user-defined subroutine and applied to a simulation of FPSO collisions with different types of icebergs. Simulated area-pressure curves are compared with design codes to validate the iceberg model. The influence of iceberg shape and temperature on the collision process is analyzed. It is indicated that FPSO structural damage not only depends on the relative strength between the iceberg and the structure, but also depends on the local shape of the iceberg.
基金The financial aid of the National Natural Science Foundation of China under grant No.59771054Postdoctoral Science Foundation of China+1 种基金Postdoctoral Science Foundation of Tsinghua-Zhongda985 Science Foundation of Tsinghua University are gratefully acknowledged.
文摘The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2 laser were carried out to study the effects of processing parameters (scanning velocity, output power of laser) on the growth direction of microstructure in the molten pool and cellular spacing selection under the condition of ultra-high temperature gradient and rapid directional solidification. The experimental results show that the growth direction of microstructure is strongly affected by laser processing parameters. The ultra-high temperature gradient directional solidification can be realized on the surface of samples during laser surface remelting by controlling laser processing parameters, the temperature gradient and growth velocity can reach 106 K/m and 24.1 mm/s, respectively, and the solidification microstructure in the center of the molten pool grows along the laser beam scanning direction. There exists a distribution range of cellular spacings under the laser rapid solidification conditions, and the average spacing decreases with increasing of growth rate. The maximum, λmax, minimum, λmin, and average primary spacing, A, as functions of growth rate, Vb, can be given by,λmax=12.54Vb-0.61, λmin=4.47 Vb-0.52, λ=9.09Vb-0.62, respectively. The experimental results are compared with the current Hunt-Lu model for rapid cellular/dendritic growth, and a good agreement is found.
基金Funded by the Fundamental Research Funds for the Central University (No.2010-II-025)the National Natural Science Foundation of China(No.50675165)
文摘Based on the car front-wheel-hub forging forming process of numerical simulation, the temperature gradient expression of forging model cavity near the surface layer was got ten, which illustrates that the forging temperature gradient is related to forging die materials thermal conductivity, specific heat and impact speed, and the correlation coefficient is 0.97. Under the different thermal conductivity, heat capacity and forging speed, the temperature gradient was compared with each other. The paper obtained the relevant laws, which illustrates the temperature gradient relates to these three parameters in a sequence of thermal conductivity 〉 impact speed〉 specific heat capacity. To reduce thermal stress in the near-surface layer of hot forging cavity, the material with greater thermal conductivity coefficient and specific heat capacity should be used.
基金The authors would like to acknowledge the financial support from China Postdoctoral Science Foundation Project(2018M641128)the National Key Research and Development Program of China(2018YFB0703500).
文摘During heat treatment or mechanical processing,most polycrystalline materials experience grain growth,which significantly affects their mechanical properties.Microstructure simulation on a mesoscopic scale is an important way of studying grain growth.A key research focus of this type of method has long been how to efficiently and accurately simulate the grain growth caused by a non-uniform temperature field with temperature gradients.In this work,we propose an improved 3D Monte Carlo Potts(MCP)method to quantitatively study the relationship between non-uniform temperature fields and final grain morphologies.Properties of the aluminum alloy AA6061-T6 are used to establish a trial calculation model and to verify the algorithms with existing experimental results in literature.The detailed grain growth process of the 6061-T6 aluminum alloy under different temperature fields is then obtained,and grain morphologies at various positions are analyzed.Results indicate that while absolute temperature and duration time are the primary factors determining the final grain size,the temperature gradient also has strong influence on the grain morphologies.The relationships between temperatures,temperature gradients and grain growth process have been established.The proposed MCP algorithm can be applied to different types of materials when the proper parameters are used.