In order to achieve the dual goals of complete deamination of magnesium ammonium phosphate(MAP) and ensure the pyrolysate's good removal properties towards ammonia-nitrogen, a temperature-programmed method for the ...In order to achieve the dual goals of complete deamination of magnesium ammonium phosphate(MAP) and ensure the pyrolysate's good removal properties towards ammonia-nitrogen, a temperature-programmed method for the pyrolysis of MAP was studied, as well as the thermodynamic and kinetic processes involved in the removal reaction system between MAP pyrolysate and aqueous ammonium. It was found that the pyrolysis method and pyrolysis final temperature had significant effects on the MAP pyrolysate's removal properties towards aqueous ammonium, and the following conditions were deemed to be more appropriate: pyrolysis final temperature and heating rate at 180 ℃ and 5 ℃/min, respectively, and a pH level of 9.5 for the removal reaction system. The resultant ammonium removal capacity by the MAP pyrolysate was 95.62 mg/g. After 120 min, the removal rate with an initial concentration of 1000 mg/L was 82%. The kinetic and thermodynamic results indicated that the removal of aqueous ammonium by MAP pyrolysate was the exchange process between H^+ and NH4^+ via MAP precipitation. The kinetics complied with the Lagergren quasi second-order model with an equilibrium time of 120 min, while the isothermal curves complied with the Freundlich model.展开更多
In this work, Temperature-Programmed Reduction Processes of iron oxide and 12 other kinds of promoted iron oxides were investigated. It is suggested that the reduction activation energy can be expressed as a normal di...In this work, Temperature-Programmed Reduction Processes of iron oxide and 12 other kinds of promoted iron oxides were investigated. It is suggested that the reduction activation energy can be expressed as a normal distribution. The distribution parameters were obtained by kinetic data fitting, which depends on the chemical and geometric characteristics of both the iron oxide and the promoter.展开更多
Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<s...Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<sup>2+</sup>) by temperature-programmed desorption of CO<sub>2</sub> (CO<sub>2</sub>-TPD). Others results were obtained by infrared to complete the study. The results of this research showed, in the physisorption region (213 - 473 K), that the cationic exchanges on NaX zeolite with bivalent cations increase slightly the interactions of CO<sub>2</sub> molecule with adsorbents and/or cationic site. Indeed, the desorption energies of physisorbed CO<sub>2</sub> obtained on the reference zeolite NaX (13.5 kJ·mol<sup>-1</sup>) are lower than that of exchanged zeolites E-CaX and E-BaX (15.77 and 15.17 kJ·mol<sup>-1</sup> respectively). In the chemisorbed CO<sub>2</sub> region (573 - 873 K), the desorption energies related to desorbed species (bidentate carbonates: CO<sub>3</sub>2-</sup>) on the exchanged zeolites E-CaX and E-BaX are about 81 kJ·mol<sup>-1</sup>, higher than the desorbed species (bicarbonates: HCO<sub>3</sub>2-</sup>) on the reference R-NaX (62 kJ·mol<sup>-1</sup>). In addition, the exchanged E-BaX zeolite develops the secondary adsorption sites corresponding to bicarbonates species with desorption energies of 35 kJ·mol<sup>-1</sup> lower to desorption energies of bicarbonates noted on the reference zeolite NaX.展开更多
In H2/N2 atmosphere, the reduction behavior of the stoichiometric compound, Fe2(MoO4)3, was studied by in-situ Mossbauer spectroscopy (in-situ MBS), temperature-programmed reduction (TPR) and X-ray diffraction (XRD). ...In H2/N2 atmosphere, the reduction behavior of the stoichiometric compound, Fe2(MoO4)3, was studied by in-situ Mossbauer spectroscopy (in-situ MBS), temperature-programmed reduction (TPR) and X-ray diffraction (XRD). The results showed that the reduction products, β-FeMoO4, Mo4O11, MoO2, Fe3O4, Fe2Mo3O8, Fe and Mo, as well as iron-molybdenum alloys, were formed subsequently when the reduction temperature was raised. It was found that when Mo6+ were reduced to Mo4+, Fe2+ were oxidized to Fe3+. Due to the interactions among the metal ions and the electron transfers, the reduction processes of the metal ions in Fe2(MoO4)3 are very complex. According to the results of XRD and MBS obtained at various TPR stages, the reaction equations for the reduction stages were proposed. The Mossbauer spectrum of an intermediate species, Fe2Mo3O8, was found to exhibit two doublets, with I.S.=0.90mm/s and Q.S. =0.58 mm/s, and I.S. = 1.02mm/s and Q.S. = 1.04mm/s, respectively.展开更多
Five Shenfu char samples were prepared from Shenfu raw coal at different temperatures (950, 1100, 1200, 1300 and 1400℃) using a muffle furnace. Demineralization of the char samples was performed by treating them wi...Five Shenfu char samples were prepared from Shenfu raw coal at different temperatures (950, 1100, 1200, 1300 and 1400℃) using a muffle furnace. Demineralization of the char samples was performed by treating them with 10% nitric acid for 10 min in a CEM Discover microwave reactor. The gasification of the chars, and corresponding demineralized chars, in a carbon dioxide (CO2) atmosphere was conducted in a Netzsch STA 409Cl31F tempera- ture-programmed thermogravimetry apparatus. The effects of charring temperature and demineralization on the gasification reactivity of chars were systematically investigated. The results show that a char formed at a lower temperature is more reactive except for demineralized char formed at 1100℃, which is less reactive than char formed at 1200℃. Demineralization decreases the char reactivities toward gasification with CO2 to a small extent.展开更多
Various Au/GO catalysts were prepared by depositing Au nanoparticles on thermally- and chemically-treated graphite oxide (GO) supports using a sol-immobilization method. The surface chemistry and structure of GO sup...Various Au/GO catalysts were prepared by depositing Au nanoparticles on thermally- and chemically-treated graphite oxide (GO) supports using a sol-immobilization method. The surface chemistry and structure of GO supports were characterized by a series of analytical techniques including X-ray photoelectron spectroscopy, temperature-programmed desorption and Raman spectroscopy. The results show that thermal and chemical treatments have large influence on the presence of surface oxygenated groups and the crystalline structure of GO supports. A strong support effect was observed on the catalytic activity of Au/GO catalysts in the liquid phase aerobic oxidation of benzyl alcohol. Compared to the amount and the type of surface oxygen functional groups, the ordered structure of GO supports may play a more important role in determining the catalytic performance of Au/GO catalysts.展开更多
CO self-poisoning and slow surface kinetics pose major challenges to a CO oxidation catalyst that should work at ambient temperature.Furthermore,the presence of moisture would cause passivation of the catalyst A highl...CO self-poisoning and slow surface kinetics pose major challenges to a CO oxidation catalyst that should work at ambient temperature.Furthermore,the presence of moisture would cause passivation of the catalyst A highly active ceria promoted Pt catalyst(4%Pt-12%CeO_2/SiO_2;conversion≥99%at low( 500 ppm) and high( 2500 ppm) CO concentrations was developed for CO oxidation at ambient temperature in humid air.Catalyst preparation variables such as Pt and CeO_2 loading,ceria deposition method,drying and calcination conditions for the ceria and Pt precursors were optimized experimentally.The activity was correlated with surface properties using CO/H_2 chemisorption,O_2-H_2 titration,X-ray diffraction and BET surface area analysis.The method of CeO_2 deposition had a significant impact on the catalytic activity.CeO_2 deposition by impregnation resulted in a catalyst that was three times more active than that prepared by deposition precipitation or CeO_2grafting.O_2-H_2 titration results revealed that the close association of ceria and Pt in the case of CeO_2deposition by impregnation resulted in higher activity.The catalyst support used was also crucial as a silica supported catalyst was five times more active than an alumina supported catalyst.The particle size and pore structure of the catalyst support were also crucial as the reaction was diffusion controlled.The drying and calcination conditions of the ceria and Pt precursors also played a crucial role in determining the catalytic activity.The Pt-CeO_2/SiO_2 catalysts with Pt 2.5 wt%and CeO_2 15 wt%were highly active(TOF 0.02 s^(-1)) and stable(conversion 99%after 15 h) at ambient conditions.展开更多
Photocatalysis of CH3OH on the ZnO(0001) surface has been investigated by using temperature-programmed desorption (TPD) method with a 266 nm laser light. TPD results show that part of the CH3OH adsorbed on ZnO(0001) s...Photocatalysis of CH3OH on the ZnO(0001) surface has been investigated by using temperature-programmed desorption (TPD) method with a 266 nm laser light. TPD results show that part of the CH3OH adsorbed on ZnO(0001) surface are in molecular form, while others are dissociated. The thermal reaction products of H2, CH3·, H2O, CO, CH2O, CO2 and CH3OH have been detected. Experiments with the UV laser light indicate that the irradiation can promote the dissociation of CH3OH/CH3O· to form CH2O, which can be fu- ture converted to HCOO- during heating or illumination. The reaction between CH3OHZn and OHad can form the H2O molecule at the Zn site. Both temperature and illumination promote the desorption of CH3· from CH3O·. The research provides a new insight into the photocatalytic reaction mechanism of CH3OH on ZnO(0001).展开更多
An in-depth understanding of the structure-activity relationship between the surface structure,chemical composition,adsorption and desorption of molecules,and their reaction activity and selectivity is necessary for t...An in-depth understanding of the structure-activity relationship between the surface structure,chemical composition,adsorption and desorption of molecules,and their reaction activity and selectivity is necessary for the rational design of high-performance catalysts.Herein,we present a method for studying catalytic mechanisms using a combination of in situ reaction cells and surface science techniques.The proposed system consists of four parts:preparation chamber,temperatureprogrammed desorption(TPD)chamber,quick load-lock chamber,and in situ reaction cell.The preparation chamber was equipped with setups based on the surface science techniques used for standard sample preparation and characterization,including an Ar+sputter gun,Auger electron spectrometer,and a low-energy electron diffractometer.After a well-defined model catalyst was prepared,the sample was transferred to a TPD chamber to investigate the adsorption and desorption of the probe molecule,or to the reaction cell,to measure the catalytic activity.A thermal desorption experiment for methanol on a clean Cu(111)surface was conducted to demonstrate the functionality of the preparation and TPD chambers.Moreover,the repeatability of the in situ reaction cell experiment was verified by CO_(2) hydrogenation on the Ni(110)surface.At a reaction pressure of 800 Torr at 673 K,turnover frequencies for the methanation reaction and reverse water-gas shift reaction were 0.15 and 7.55 Ni atom^(-1) s^(-1),respectively.展开更多
The chemistry of acetaldehyde (CH3CHO) adsorbed on the anatase TiO2(001)-(1×4) surface has been investigated by temperature-programmed desorption (TPD) method. Our experimental results provide the direct evidence...The chemistry of acetaldehyde (CH3CHO) adsorbed on the anatase TiO2(001)-(1×4) surface has been investigated by temperature-programmed desorption (TPD) method. Our experimental results provide the direct evidence that the perfect lattice sites on the anatase TiO2(001)-(1×4) surface are quite inert for the reaction of CH3CHO, but the reduced defect sites on the surface are active for the thermally driven reductive carbon-carbon coupling reactions of CH3CHO to produce 2-butanone and butene. We propose that the coupling reactions of CH3CHO on the anatase TiO2(001)-(1×4) surface should undergo through the adsorption of paired CH3CHO molecules at the reduced defect sites, since the existing reduced Ti pairs provide the suitable adsorption sites.展开更多
Photocatalysis of 2-propanol on A-TiO2(101) has been investigated using a temperature programed desorption method with 266 nm laser light. A clear mechanism is proposed for photodissociation of 2-propanol on A-TiO2...Photocatalysis of 2-propanol on A-TiO2(101) has been investigated using a temperature programed desorption method with 266 nm laser light. A clear mechanism is proposed for photodissociation of 2-propanol on A-TiO2(101). Acetone product on five coordinate Ti4+ sites is formed in a stepwise manner in which the O-H dissociation proceeds first and then followed by secondary C-H dissociation of 2-propanol while H atoms are transferred to the adjacent bridge bond oxygen (BBO) sites. Low temperature water is formed in a thermally driven process via H-atom on BBO in exchange with isopropyl groups of molecule 2-propanol, while isopropyl radical desorbs at high temperature during the TPD process. The observation demonstrates the prospect of TiO2 as a photocatalyst for degradation of organics.展开更多
FT-IR spectrometry, TPD and adsorption isotherms of thiophene on NaY/NiY zeolites were carried out and the diffusion coefficient was obtained by means of its real-time dynamic curves. The loading of thiophene adsorbed...FT-IR spectrometry, TPD and adsorption isotherms of thiophene on NaY/NiY zeolites were carried out and the diffusion coefficient was obtained by means of its real-time dynamic curves. The loading of thiophene adsorbed on the NaY zeolite decreased with an increasing temperature, which was ascribed to the patterns of physical adsorption. Both physical and chemical adsorption phenomena were detected on the NiY zeolite, with the 0 complexation and S-M interaction existing during the chemical adsorption. The loading of thiophene adsorbed on the NiY zeolite at 302 K and 335 K was equal, but it decreased at 373 K. The diffusion coefficient of thiophene on the NaY zeolite decreased when the loading increased to more than 0.02 mmol/g, and on the contrary that of thiophene on the NiY zeolite did not change obviously with the loading adsorbed.展开更多
We have investigated the photoinduced decomposition of formaldehyde (CH2O) on a rutile TiO2(100)-(1×1) surface at 355 nrn using ternperature-prograrnrned desorption. Products, formate (HCOO), methyl radic...We have investigated the photoinduced decomposition of formaldehyde (CH2O) on a rutile TiO2(100)-(1×1) surface at 355 nrn using ternperature-prograrnrned desorption. Products, formate (HCOO), methyl radical (CH3.), ethylene (C2H4), and methanol (CH3OH) have been detected. The initial step in the decomposition of CH2O on the futile TiO2(100)-(1×1) surface is the formation of a dioxyrnethylene intermediate in which the carbonyl O atom of CH2O is bound to a Ti atom at the five-fold-coordinated Ti4+ (Tisc) site and its carbonyl C atom bound to a nearby bridge-bonded oxygen (Oh) atom, respectively. During 355 nrn irradiation, the dioxymethylene intermediate can transfer an H atom to the Ob atom, thus forming HCOO directly, which is considered as the main reaction channel. In addition, the dioxyrnethylene intermediate can also transfer methylene to the Ob row and break the C-O bond, thus leaving the original carbonyl O atom at the Tisc site. After the transfer of methylene, several pathways to products are available. Thus, we have found that Ob atoms are intimately involved in the photoinduced decomposition of CH2O on the futile TiO2 (100)-(1× 1) surface.展开更多
Core-shell nanoparticles Fe@Fe3O4 supported on activated carbon (AC) and carbon nanotubes (CNTs) have been studied by H2 temperature-programmed reduction (TPR). Nanoparticles with size of 6.5 nm were synthesized by ir...Core-shell nanoparticles Fe@Fe3O4 supported on activated carbon (AC) and carbon nanotubes (CNTs) have been studied by H2 temperature-programmed reduction (TPR). Nanoparticles with size of 6.5 nm were synthesized by iron(II) oleate thermal decomposition and were supported on activated carbon and carbon nanotubes by colloid deposition method. The nanoparticles Fe@Fe3O4 are characterized by TEM and IR. Reduction of nanoparticles on AC starts at 140?C, whereas reduction of nanoparticles on CNTs starts at 200?C. Moreover, gasification of CNTs with methane releasing starts at 450?C, whereas gasification of AC is negligible at temperatures up to 800?C. All these findings illustrate a strong difference in the interaction between nanoparticles and the support material for AC and CNTs.展开更多
CO oxidation was investigated on various powder oxide supported Pd catalysts by temperature-programined reaction. The pre-reduced catalysts show significantly higher activities than the pre-oxidized ones. Model studie...CO oxidation was investigated on various powder oxide supported Pd catalysts by temperature-programined reaction. The pre-reduced catalysts show significantly higher activities than the pre-oxidized ones. Model studies were performed to better understand the oxidation state, reactivities and stabilities of partially oxidized Pd surfaces under CO oxidation reaction condi tions using an in situ infrared reflection absorption spectrometer (IRAS). Three O/Pd(100) model surfaces, chemisorbed oxygen covered surface, surface oxide and bulk-like surface oxide, were prepared and characterized by low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES). The present work demonstrates that the oxidized palladium surface is less active for CO oxidation than the metallic surface, and is unstable under the reaction conditions with sufficient CO.展开更多
The TPD equation with surface migration of adsorbed species on two kinds of adsorbingsites being put into consideration was derived.According to the equation,a series of theoretical TPD curveswere simulated by compute...The TPD equation with surface migration of adsorbed species on two kinds of adsorbingsites being put into consideration was derived.According to the equation,a series of theoretical TPD curveswere simulated by computer.From the results,one can see that surface migration of adsorbed species af-fects greatly the shape and position of the TPD peaks as well as the resolution power of TPD spectra.展开更多
基金Project(ZDSY20120619093952884)supported by Shenzhen Strategic New Industry Development,China
文摘In order to achieve the dual goals of complete deamination of magnesium ammonium phosphate(MAP) and ensure the pyrolysate's good removal properties towards ammonia-nitrogen, a temperature-programmed method for the pyrolysis of MAP was studied, as well as the thermodynamic and kinetic processes involved in the removal reaction system between MAP pyrolysate and aqueous ammonium. It was found that the pyrolysis method and pyrolysis final temperature had significant effects on the MAP pyrolysate's removal properties towards aqueous ammonium, and the following conditions were deemed to be more appropriate: pyrolysis final temperature and heating rate at 180 ℃ and 5 ℃/min, respectively, and a pH level of 9.5 for the removal reaction system. The resultant ammonium removal capacity by the MAP pyrolysate was 95.62 mg/g. After 120 min, the removal rate with an initial concentration of 1000 mg/L was 82%. The kinetic and thermodynamic results indicated that the removal of aqueous ammonium by MAP pyrolysate was the exchange process between H^+ and NH4^+ via MAP precipitation. The kinetics complied with the Lagergren quasi second-order model with an equilibrium time of 120 min, while the isothermal curves complied with the Freundlich model.
文摘In this work, Temperature-Programmed Reduction Processes of iron oxide and 12 other kinds of promoted iron oxides were investigated. It is suggested that the reduction activation energy can be expressed as a normal distribution. The distribution parameters were obtained by kinetic data fitting, which depends on the chemical and geometric characteristics of both the iron oxide and the promoter.
文摘Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<sup>2+</sup>) by temperature-programmed desorption of CO<sub>2</sub> (CO<sub>2</sub>-TPD). Others results were obtained by infrared to complete the study. The results of this research showed, in the physisorption region (213 - 473 K), that the cationic exchanges on NaX zeolite with bivalent cations increase slightly the interactions of CO<sub>2</sub> molecule with adsorbents and/or cationic site. Indeed, the desorption energies of physisorbed CO<sub>2</sub> obtained on the reference zeolite NaX (13.5 kJ·mol<sup>-1</sup>) are lower than that of exchanged zeolites E-CaX and E-BaX (15.77 and 15.17 kJ·mol<sup>-1</sup> respectively). In the chemisorbed CO<sub>2</sub> region (573 - 873 K), the desorption energies related to desorbed species (bidentate carbonates: CO<sub>3</sub>2-</sup>) on the exchanged zeolites E-CaX and E-BaX are about 81 kJ·mol<sup>-1</sup>, higher than the desorbed species (bicarbonates: HCO<sub>3</sub>2-</sup>) on the reference R-NaX (62 kJ·mol<sup>-1</sup>). In addition, the exchanged E-BaX zeolite develops the secondary adsorption sites corresponding to bicarbonates species with desorption energies of 35 kJ·mol<sup>-1</sup> lower to desorption energies of bicarbonates noted on the reference zeolite NaX.
基金Project supported by the Science Fund of the Chinese Academy of Sciencesthe Trans-century Training Program Foundation for the Talents by the State Education Commission of Chinathe Measurement Fund from the Modern Analysis Center of the Nanjing Univer
文摘In H2/N2 atmosphere, the reduction behavior of the stoichiometric compound, Fe2(MoO4)3, was studied by in-situ Mossbauer spectroscopy (in-situ MBS), temperature-programmed reduction (TPR) and X-ray diffraction (XRD). The results showed that the reduction products, β-FeMoO4, Mo4O11, MoO2, Fe3O4, Fe2Mo3O8, Fe and Mo, as well as iron-molybdenum alloys, were formed subsequently when the reduction temperature was raised. It was found that when Mo6+ were reduced to Mo4+, Fe2+ were oxidized to Fe3+. Due to the interactions among the metal ions and the electron transfers, the reduction processes of the metal ions in Fe2(MoO4)3 are very complex. According to the results of XRD and MBS obtained at various TPR stages, the reaction equations for the reduction stages were proposed. The Mossbauer spectrum of an intermediate species, Fe2Mo3O8, was found to exhibit two doublets, with I.S.=0.90mm/s and Q.S. =0.58 mm/s, and I.S. = 1.02mm/s and Q.S. = 1.04mm/s, respectively.
基金Projects 2004CB217704 supported by the Special Fund for Major State Basic Research Project, 104031 by the Key Project of Chinese Ministry of Education JHB05-33 by the Program of the Universities in Jiangsu Province for Development of High-Tech Industries
文摘Five Shenfu char samples were prepared from Shenfu raw coal at different temperatures (950, 1100, 1200, 1300 and 1400℃) using a muffle furnace. Demineralization of the char samples was performed by treating them with 10% nitric acid for 10 min in a CEM Discover microwave reactor. The gasification of the chars, and corresponding demineralized chars, in a carbon dioxide (CO2) atmosphere was conducted in a Netzsch STA 409Cl31F tempera- ture-programmed thermogravimetry apparatus. The effects of charring temperature and demineralization on the gasification reactivity of chars were systematically investigated. The results show that a char formed at a lower temperature is more reactive except for demineralized char formed at 1100℃, which is less reactive than char formed at 1200℃. Demineralization decreases the char reactivities toward gasification with CO2 to a small extent.
基金This work was supported by the Natural Science Foundation of Anhui Province (No.11040606M39) and the Fundamental Research Funds for the Central Universities.
文摘Various Au/GO catalysts were prepared by depositing Au nanoparticles on thermally- and chemically-treated graphite oxide (GO) supports using a sol-immobilization method. The surface chemistry and structure of GO supports were characterized by a series of analytical techniques including X-ray photoelectron spectroscopy, temperature-programmed desorption and Raman spectroscopy. The results show that thermal and chemical treatments have large influence on the presence of surface oxygenated groups and the crystalline structure of GO supports. A strong support effect was observed on the catalytic activity of Au/GO catalysts in the liquid phase aerobic oxidation of benzyl alcohol. Compared to the amount and the type of surface oxygen functional groups, the ordered structure of GO supports may play a more important role in determining the catalytic performance of Au/GO catalysts.
基金supported by US Army contract(W56HZV-05-C0686) at Auburn University administered through TARDEC
文摘CO self-poisoning and slow surface kinetics pose major challenges to a CO oxidation catalyst that should work at ambient temperature.Furthermore,the presence of moisture would cause passivation of the catalyst A highly active ceria promoted Pt catalyst(4%Pt-12%CeO_2/SiO_2;conversion≥99%at low( 500 ppm) and high( 2500 ppm) CO concentrations was developed for CO oxidation at ambient temperature in humid air.Catalyst preparation variables such as Pt and CeO_2 loading,ceria deposition method,drying and calcination conditions for the ceria and Pt precursors were optimized experimentally.The activity was correlated with surface properties using CO/H_2 chemisorption,O_2-H_2 titration,X-ray diffraction and BET surface area analysis.The method of CeO_2 deposition had a significant impact on the catalytic activity.CeO_2 deposition by impregnation resulted in a catalyst that was three times more active than that prepared by deposition precipitation or CeO_2grafting.O_2-H_2 titration results revealed that the close association of ceria and Pt in the case of CeO_2deposition by impregnation resulted in higher activity.The catalyst support used was also crucial as a silica supported catalyst was five times more active than an alumina supported catalyst.The particle size and pore structure of the catalyst support were also crucial as the reaction was diffusion controlled.The drying and calcination conditions of the ceria and Pt precursors also played a crucial role in determining the catalytic activity.The Pt-CeO_2/SiO_2 catalysts with Pt 2.5 wt%and CeO_2 15 wt%were highly active(TOF 0.02 s^(-1)) and stable(conversion 99%after 15 h) at ambient conditions.
基金National Key R&D Program of China (No.2016YFF0200500), the National Natural Science Foundation of China (No.21473173, No.21590802, and No.21403207), the Strategic Prior- ity Research Program of Chinese Academy of Sciences (No.XDB17000000), and the Fundamental Research Funds for the Central Universities. We thank Chen-biao Xu at Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Wen-shao Yang at Hangzhou Institute of Advanced Studies, Zhejiang Normal Uni- versity for their help during experiments.
文摘Photocatalysis of CH3OH on the ZnO(0001) surface has been investigated by using temperature-programmed desorption (TPD) method with a 266 nm laser light. TPD results show that part of the CH3OH adsorbed on ZnO(0001) surface are in molecular form, while others are dissociated. The thermal reaction products of H2, CH3·, H2O, CO, CH2O, CO2 and CH3OH have been detected. Experiments with the UV laser light indicate that the irradiation can promote the dissociation of CH3OH/CH3O· to form CH2O, which can be fu- ture converted to HCOO- during heating or illumination. The reaction between CH3OHZn and OHad can form the H2O molecule at the Zn site. Both temperature and illumination promote the desorption of CH3· from CH3O·. The research provides a new insight into the photocatalytic reaction mechanism of CH3OH on ZnO(0001).
基金supported by the National Natural Science Foundation of China (Nos.21802096,21832004,21902179,21991152,and 21991150)the Shanghai XFEL Beamline Project (SBP) (31011505505885920161A2101001)the support of the Shanghai Sailing Program (19YF1455600)。
文摘An in-depth understanding of the structure-activity relationship between the surface structure,chemical composition,adsorption and desorption of molecules,and their reaction activity and selectivity is necessary for the rational design of high-performance catalysts.Herein,we present a method for studying catalytic mechanisms using a combination of in situ reaction cells and surface science techniques.The proposed system consists of four parts:preparation chamber,temperatureprogrammed desorption(TPD)chamber,quick load-lock chamber,and in situ reaction cell.The preparation chamber was equipped with setups based on the surface science techniques used for standard sample preparation and characterization,including an Ar+sputter gun,Auger electron spectrometer,and a low-energy electron diffractometer.After a well-defined model catalyst was prepared,the sample was transferred to a TPD chamber to investigate the adsorption and desorption of the probe molecule,or to the reaction cell,to measure the catalytic activity.A thermal desorption experiment for methanol on a clean Cu(111)surface was conducted to demonstrate the functionality of the preparation and TPD chambers.Moreover,the repeatability of the in situ reaction cell experiment was verified by CO_(2) hydrogenation on the Ni(110)surface.At a reaction pressure of 800 Torr at 673 K,turnover frequencies for the methanation reaction and reverse water-gas shift reaction were 0.15 and 7.55 Ni atom^(-1) s^(-1),respectively.
基金supported by the Ministry of Science and Technology of China (No.2016YFA0200603)the National Natural Science Foundation of China (No.91421313 and No.21573207)Anhui Initiative in Quantum Information Technologies (AHY090300)
文摘The chemistry of acetaldehyde (CH3CHO) adsorbed on the anatase TiO2(001)-(1×4) surface has been investigated by temperature-programmed desorption (TPD) method. Our experimental results provide the direct evidence that the perfect lattice sites on the anatase TiO2(001)-(1×4) surface are quite inert for the reaction of CH3CHO, but the reduced defect sites on the surface are active for the thermally driven reductive carbon-carbon coupling reactions of CH3CHO to produce 2-butanone and butene. We propose that the coupling reactions of CH3CHO on the anatase TiO2(001)-(1×4) surface should undergo through the adsorption of paired CH3CHO molecules at the reduced defect sites, since the existing reduced Ti pairs provide the suitable adsorption sites.
基金This work was supported by the Chinese Academy of Sciences, the National Natural Science Foundation of China (No.21403224), the Chinese Ministry of Science and Technology (No.2013CB834605), the Youth Innovation Promotion Association CAS, and the Key Research Program of the Chinese Academy of Sciences.
文摘Photocatalysis of 2-propanol on A-TiO2(101) has been investigated using a temperature programed desorption method with 266 nm laser light. A clear mechanism is proposed for photodissociation of 2-propanol on A-TiO2(101). Acetone product on five coordinate Ti4+ sites is formed in a stepwise manner in which the O-H dissociation proceeds first and then followed by secondary C-H dissociation of 2-propanol while H atoms are transferred to the adjacent bridge bond oxygen (BBO) sites. Low temperature water is formed in a thermally driven process via H-atom on BBO in exchange with isopropyl groups of molecule 2-propanol, while isopropyl radical desorbs at high temperature during the TPD process. The observation demonstrates the prospect of TiO2 as a photocatalyst for degradation of organics.
基金the National Natural Science Foundation of China,the Ministry of Science and Technology,the State Key Laboratory of Molecular Reaction Dynamics,the key Research Program of Chinese Academy of Sciences
文摘FT-IR spectrometry, TPD and adsorption isotherms of thiophene on NaY/NiY zeolites were carried out and the diffusion coefficient was obtained by means of its real-time dynamic curves. The loading of thiophene adsorbed on the NaY zeolite decreased with an increasing temperature, which was ascribed to the patterns of physical adsorption. Both physical and chemical adsorption phenomena were detected on the NiY zeolite, with the 0 complexation and S-M interaction existing during the chemical adsorption. The loading of thiophene adsorbed on the NiY zeolite at 302 K and 335 K was equal, but it decreased at 373 K. The diffusion coefficient of thiophene on the NaY zeolite decreased when the loading increased to more than 0.02 mmol/g, and on the contrary that of thiophene on the NiY zeolite did not change obviously with the loading adsorbed.
基金supported by the National Natural Science Foundation of China(No.21673235 and No.21403224)the Youth Innovation Promotion Association CAS,and the Key Research Program of the Chinese Academy of Sciences
文摘We have investigated the photoinduced decomposition of formaldehyde (CH2O) on a rutile TiO2(100)-(1×1) surface at 355 nrn using ternperature-prograrnrned desorption. Products, formate (HCOO), methyl radical (CH3.), ethylene (C2H4), and methanol (CH3OH) have been detected. The initial step in the decomposition of CH2O on the futile TiO2(100)-(1×1) surface is the formation of a dioxyrnethylene intermediate in which the carbonyl O atom of CH2O is bound to a Ti atom at the five-fold-coordinated Ti4+ (Tisc) site and its carbonyl C atom bound to a nearby bridge-bonded oxygen (Oh) atom, respectively. During 355 nrn irradiation, the dioxymethylene intermediate can transfer an H atom to the Ob atom, thus forming HCOO directly, which is considered as the main reaction channel. In addition, the dioxyrnethylene intermediate can also transfer methylene to the Ob row and break the C-O bond, thus leaving the original carbonyl O atom at the Tisc site. After the transfer of methylene, several pathways to products are available. Thus, we have found that Ob atoms are intimately involved in the photoinduced decomposition of CH2O on the futile TiO2 (100)-(1× 1) surface.
文摘Core-shell nanoparticles Fe@Fe3O4 supported on activated carbon (AC) and carbon nanotubes (CNTs) have been studied by H2 temperature-programmed reduction (TPR). Nanoparticles with size of 6.5 nm were synthesized by iron(II) oleate thermal decomposition and were supported on activated carbon and carbon nanotubes by colloid deposition method. The nanoparticles Fe@Fe3O4 are characterized by TEM and IR. Reduction of nanoparticles on AC starts at 140?C, whereas reduction of nanoparticles on CNTs starts at 200?C. Moreover, gasification of CNTs with methane releasing starts at 450?C, whereas gasification of AC is negligible at temperatures up to 800?C. All these findings illustrate a strong difference in the interaction between nanoparticles and the support material for AC and CNTs.
基金supported by the National Basic Research Program of China(2010CB732303,2013CB933102)the Major Project of Chinese Ministry of Education(309019)+2 种基金the National Natural Science Foundation of China(21033006,21073149,21273178)the Program for Changjiang Scholars and Innovative Research Team in University(IRT1036)the Ph.D Programs foundation of Chinese Ministry of Education(20110121110010)
文摘CO oxidation was investigated on various powder oxide supported Pd catalysts by temperature-programined reaction. The pre-reduced catalysts show significantly higher activities than the pre-oxidized ones. Model studies were performed to better understand the oxidation state, reactivities and stabilities of partially oxidized Pd surfaces under CO oxidation reaction condi tions using an in situ infrared reflection absorption spectrometer (IRAS). Three O/Pd(100) model surfaces, chemisorbed oxygen covered surface, surface oxide and bulk-like surface oxide, were prepared and characterized by low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES). The present work demonstrates that the oxidized palladium surface is less active for CO oxidation than the metallic surface, and is unstable under the reaction conditions with sufficient CO.
基金the National Natural Science Foundation of China.
文摘The TPD equation with surface migration of adsorbed species on two kinds of adsorbingsites being put into consideration was derived.According to the equation,a series of theoretical TPD curveswere simulated by computer.From the results,one can see that surface migration of adsorbed species af-fects greatly the shape and position of the TPD peaks as well as the resolution power of TPD spectra.