Ni3Al-based alloys are excellent candidates for the structural materials used for turbine engines due to their excellent high-temperature properties.This study aims at laser powder bed fusion and post-hot isostatic pr...Ni3Al-based alloys are excellent candidates for the structural materials used for turbine engines due to their excellent high-temperature properties.This study aims at laser powder bed fusion and post-hot isostatic pressing(HIP)treatment of Ni3Al-based IC^(-2)21 M alloy with a highγ0 volume fraction.The as-built samples exhibits unavoidable solidification cracking and ductility dip cracking,and the laser parameter optimization can reduce the crack density to 1.34 mm/mm^(2).Transmission electron microscope(TEM)analysis reveals ultra-fine nanoscaleγ0 phases in the as-built samples due to the high cooling rate during rapid solidification.After HIP treatment,a fully dense structure without cracking defects is achieved,which exhibits an equiaxed structure with grain size~120-180μm and irregularly shapedγ0 precipitates~1-3μm with a prominently high fraction of 86%.The room-temperature tensile test of as-built samples shows a high ultimate tensile strength(σUTS)of 1039.7 MPa and low fracture elongation of 6.4%.After HIP treatment,a significant improvement in ductility(15.7%)and a slight loss of strength(σUTS of 831.7 MPa)are obtained by eliminating the crack defects.Both the as-built and HIP samples exhibit retained highσUTS values of 589.8 MPa and 786.2 MPa,respectively,at 900C.The HIP samples exhibita slight decrease in ductility to~12.9%,indicating excellent high-temperature mechanical performance.Moreover,the abnormal increase in strength and decrease in ductility suggest the critical role of a highγ0 fraction in cracking formation.The intrinsic heat treatment during repeating thermal cycles can induce brittleness and trigger cracking initiation in the heat-affected zone with notable deteriorating ductility.The results indicate that the combination of LPBF and HIP can effectively reduce the crack density and enhance the mechanical properties of Ni_(3)Al-based alloy,making it a promising material for high-temperature applications.展开更多
With the considerable applications of ceramic matrix composites(CMC) in aircraft engineering, the design of CMC bolted joint gains paramount attention because of its capacity to to improve load-bearing efficiency of a...With the considerable applications of ceramic matrix composites(CMC) in aircraft engineering, the design of CMC bolted joint gains paramount attention because of its capacity to to improve load-bearing efficiency of aircraft key structure. In this work, a 3 D finite element model was established to predict tensile performance and failure modes of single-lap, single-bolt 2 D C/SiC composite, and superalloy joint, which considers the progressive damage behavior of 2 D woven C/SiC composites. On the basis of the developed progressive damage model, a parametric study was carried out to illustrate the effects of bolt preload and bolt-hole clearance on mechanical behaviors of the hybrid bolted joint. It was found that the increase in the value of bolt preload made the failure load grow first and then drop, and the optimum value of bolt preload 5.00 kN generated 56.47% rise in the initial failure load and 22.83% rise in the final failure load for the bolted joint in comparison with zero preload case. As the clearance increased from 0 to 2.00%, the initial and final failure loads respectively declined by 45.88% and 24.02% for 2.00% bolt-hole clearance relative to the neat-fit case. The loss in failure loads can be reduced to compressive stress concentration around the fastening hole-edge area, leading to the appearance of earlier damages by the introduction of increasing bolt hole clearance.展开更多
Extrusion-calendering method was developed to prepare single-polymer composites(SPCs) of ultrahigh molecular weight polyethylene( UHMWPE) fabric reinforcing low density polyethylene(LDPE).Differential scanning c...Extrusion-calendering method was developed to prepare single-polymer composites(SPCs) of ultrahigh molecular weight polyethylene( UHMWPE) fabric reinforcing low density polyethylene(LDPE).Differential scanning calorimeter(DSC) experiments were executed to determine the setup of extrusion temperature.Effects of the die temperature on the tensile and interfacial performances of SPCs were studied through the tensile and T-peel tests,respectively. The results showed that both tensile strength and modulus increased initially and decreased afterwards as the temperature increased. The peak values of tensile strength and modulus of PE SPCs,which are 10. 8 and 3. 5 times as high as those of the unreinforced LDPE respectively,were obtained at 150 ℃. Higher temperatures also give a positive effect on peel strength. Scanning electron microscopy( SEM) and camera were also used to observe the morphology of the SPCs samples.展开更多
The effect of rare earth addition on the microstructure and mechanical performances of as-cast and wrought Al alloys has been attracting increasing attention recently.Rare earth addition has great potential in modifyi...The effect of rare earth addition on the microstructure and mechanical performances of as-cast and wrought Al alloys has been attracting increasing attention recently.Rare earth addition has great potential in modifying the structure and improving the properties of materials.However,there are currently few reports about the effect of rare earth addition on the microstructure and performances of Al alloys prepared via selective laser melting.Here,AlSi10Mg alloys were manufactured using selective laser melting,and the effect of Er addition was investigated.The results indicate that Er addition leads toα-Al refinement and modifies the minority Si phase.The formation of the Al_(3)Er phase induced by Er addition enhances the stren gth of the material.Modification of the Si phase also increases ductility.This strategy can help improve the mechanical performance of alum inum alloys prepared via selective laser melting.展开更多
In the present study,the effect of Zn content on the microstructure and deformation behavior of the as-cast Mg-Zn-Y-Nd alloy has been investigated.The results showed that as Zn content increased,the volume fraction of...In the present study,the effect of Zn content on the microstructure and deformation behavior of the as-cast Mg-Zn-Y-Nd alloy has been investigated.The results showed that as Zn content increased,the volume fraction of secondary phases increased.Moreover,the phase transformation from W-phase to W-phase and I-phase occurred.In the as-cast state,W-phase exists as eutectic and large block form.When Zn content increases to 6 and 8%(wt%),small I-phase could precipitate around W-phase particles.Additionally,the effect of Zn content on the tensile properties and deformation behavior varies with the testing temperature.At room temperature,the tensile strength increases with Zn content,whereas the elongation increases initially and then decreases.At 250℃,as Zn content increases,the tensile strength decreases initially and then increases slightly,whereas the elongation decreases.At 350℃,the elongation increases with Zn content,whereas the tensile strength decreases initially and then increases slightly.展开更多
The effects of rare earth addition on the microstructures as well as the tensile performances and electrical conductivity of Al alloys have attracted increasing attention recently.However,little research has been carr...The effects of rare earth addition on the microstructures as well as the tensile performances and electrical conductivity of Al alloys have attracted increasing attention recently.However,little research has been carried out to investigate the influence of minor Ce(the Ce additive amount is below 0.1 wt.%).In this study,experiments have been performed to explore the effects of minor Ce on the microstructures as well as the tensile properties and the electrical conductivity of Al-Fe alloy.The results demonstrate that minor rare earth Ce addition not only leads to the α-Al refinement and the modification of Al_(13)Fe_(4) minority phase,but also decreases the solid solubility of Si.The grain refinement induced by Ce addition has a negligible influence on the tensile strength and yield strength,while the ductility and conductivity can be simultaneously ascended by adding rare earth Ce.The modification of Al_(13)Fe_(4) minority phase is responsible for the increment of ductility,and the diminution of Si solid solubility in the Al matrix leads to the increase of electrical conductivity.This work provides a strategy for concurrently improving the tensile performances and electrical conductivity of aluminum alloy.展开更多
基金supported by the National Key Research and Development Program of China[grant numbers 2019YFA0705300,2021YFB3702502]National Natural Science Foundation of China[grant numbers 52001191,52127807,52271035]+3 种基金Independent Research Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced FerrometallurgyShanghai University,China[grant numbers SKLASS 2022-Z10]the Natural Science Foundation of Shanghai,China[grant.23ZR1421500]SPMI Project from Shanghai Academy of Spaceflight Technology,China[grant.SPMI2022-06].
文摘Ni3Al-based alloys are excellent candidates for the structural materials used for turbine engines due to their excellent high-temperature properties.This study aims at laser powder bed fusion and post-hot isostatic pressing(HIP)treatment of Ni3Al-based IC^(-2)21 M alloy with a highγ0 volume fraction.The as-built samples exhibits unavoidable solidification cracking and ductility dip cracking,and the laser parameter optimization can reduce the crack density to 1.34 mm/mm^(2).Transmission electron microscope(TEM)analysis reveals ultra-fine nanoscaleγ0 phases in the as-built samples due to the high cooling rate during rapid solidification.After HIP treatment,a fully dense structure without cracking defects is achieved,which exhibits an equiaxed structure with grain size~120-180μm and irregularly shapedγ0 precipitates~1-3μm with a prominently high fraction of 86%.The room-temperature tensile test of as-built samples shows a high ultimate tensile strength(σUTS)of 1039.7 MPa and low fracture elongation of 6.4%.After HIP treatment,a significant improvement in ductility(15.7%)and a slight loss of strength(σUTS of 831.7 MPa)are obtained by eliminating the crack defects.Both the as-built and HIP samples exhibit retained highσUTS values of 589.8 MPa and 786.2 MPa,respectively,at 900C.The HIP samples exhibita slight decrease in ductility to~12.9%,indicating excellent high-temperature mechanical performance.Moreover,the abnormal increase in strength and decrease in ductility suggest the critical role of a highγ0 fraction in cracking formation.The intrinsic heat treatment during repeating thermal cycles can induce brittleness and trigger cracking initiation in the heat-affected zone with notable deteriorating ductility.The results indicate that the combination of LPBF and HIP can effectively reduce the crack density and enhance the mechanical properties of Ni_(3)Al-based alloy,making it a promising material for high-temperature applications.
基金Sponsored by the Pre-Research Foundation of Shenyang Aircraft Design and Research Institute,the Aviation Industry Corporation of China(Grant No.JH20128255)the National Defence Basic Research Program(Grant No.JZ20180032)the Pre-Research Foundation of Equipment Development Department of People’s Republic of China Central Military Commission(Grant No.ZJJSN20200001)。
文摘With the considerable applications of ceramic matrix composites(CMC) in aircraft engineering, the design of CMC bolted joint gains paramount attention because of its capacity to to improve load-bearing efficiency of aircraft key structure. In this work, a 3 D finite element model was established to predict tensile performance and failure modes of single-lap, single-bolt 2 D C/SiC composite, and superalloy joint, which considers the progressive damage behavior of 2 D woven C/SiC composites. On the basis of the developed progressive damage model, a parametric study was carried out to illustrate the effects of bolt preload and bolt-hole clearance on mechanical behaviors of the hybrid bolted joint. It was found that the increase in the value of bolt preload made the failure load grow first and then drop, and the optimum value of bolt preload 5.00 kN generated 56.47% rise in the initial failure load and 22.83% rise in the final failure load for the bolted joint in comparison with zero preload case. As the clearance increased from 0 to 2.00%, the initial and final failure loads respectively declined by 45.88% and 24.02% for 2.00% bolt-hole clearance relative to the neat-fit case. The loss in failure loads can be reduced to compressive stress concentration around the fastening hole-edge area, leading to the appearance of earlier damages by the introduction of increasing bolt hole clearance.
基金Supported by the National Natural Science Foundation of China(51403019)
文摘Extrusion-calendering method was developed to prepare single-polymer composites(SPCs) of ultrahigh molecular weight polyethylene( UHMWPE) fabric reinforcing low density polyethylene(LDPE).Differential scanning calorimeter(DSC) experiments were executed to determine the setup of extrusion temperature.Effects of the die temperature on the tensile and interfacial performances of SPCs were studied through the tensile and T-peel tests,respectively. The results showed that both tensile strength and modulus increased initially and decreased afterwards as the temperature increased. The peak values of tensile strength and modulus of PE SPCs,which are 10. 8 and 3. 5 times as high as those of the unreinforced LDPE respectively,were obtained at 150 ℃. Higher temperatures also give a positive effect on peel strength. Scanning electron microscopy( SEM) and camera were also used to observe the morphology of the SPCs samples.
基金Project supported by the National Natural Science Foundation of China(51974092,U21A2043)Guangdong Basic and Applied Basic Research Foundation(2020A1515110136,2020B1515120065,2022B1515120066)Dongguan Science and Technology Special Agent Project(20221800500212)。
文摘The effect of rare earth addition on the microstructure and mechanical performances of as-cast and wrought Al alloys has been attracting increasing attention recently.Rare earth addition has great potential in modifying the structure and improving the properties of materials.However,there are currently few reports about the effect of rare earth addition on the microstructure and performances of Al alloys prepared via selective laser melting.Here,AlSi10Mg alloys were manufactured using selective laser melting,and the effect of Er addition was investigated.The results indicate that Er addition leads toα-Al refinement and modifies the minority Si phase.The formation of the Al_(3)Er phase induced by Er addition enhances the stren gth of the material.Modification of the Si phase also increases ductility.This strategy can help improve the mechanical performance of alum inum alloys prepared via selective laser melting.
基金supported financially by the Shenzhen Technology Innovation Plan(Nos.CXZZ20140731091722497 and CXZZ20140419114548507)the Shenzhen Basic Research Project(Nos.JCYJ20150529162228734,JCYJ20160407090231002,JCYJ20150625155931806 and JCYJ20160427100211076)The Thirteen Five National Key Research and Development Plan(No.2016YFC1102601)
文摘In the present study,the effect of Zn content on the microstructure and deformation behavior of the as-cast Mg-Zn-Y-Nd alloy has been investigated.The results showed that as Zn content increased,the volume fraction of secondary phases increased.Moreover,the phase transformation from W-phase to W-phase and I-phase occurred.In the as-cast state,W-phase exists as eutectic and large block form.When Zn content increases to 6 and 8%(wt%),small I-phase could precipitate around W-phase particles.Additionally,the effect of Zn content on the tensile properties and deformation behavior varies with the testing temperature.At room temperature,the tensile strength increases with Zn content,whereas the elongation increases initially and then decreases.At 250℃,as Zn content increases,the tensile strength decreases initially and then increases slightly,whereas the elongation decreases.At 350℃,the elongation increases with Zn content,whereas the tensile strength decreases initially and then increases slightly.
基金supported by the Bureau of International Cooperation Chinese Academy of Sciences (Grant No.172GJHZ2022038MI)the National Key Research and Development Program of China (Grant No.2021YFA0716303)+3 种基金the National Natural Science Foundation of China(Grant No.U21A2043)the Bintech-IMR R&D Program (Grant No.GYYJSBU-2022-001)the Science and Technology Project of Fujian Province(Grant Nos.2020T3037 and 2021T3030)the Science and Technology Project of Guangxi Province (Grant No.2022JBGS041)。
文摘The effects of rare earth addition on the microstructures as well as the tensile performances and electrical conductivity of Al alloys have attracted increasing attention recently.However,little research has been carried out to investigate the influence of minor Ce(the Ce additive amount is below 0.1 wt.%).In this study,experiments have been performed to explore the effects of minor Ce on the microstructures as well as the tensile properties and the electrical conductivity of Al-Fe alloy.The results demonstrate that minor rare earth Ce addition not only leads to the α-Al refinement and the modification of Al_(13)Fe_(4) minority phase,but also decreases the solid solubility of Si.The grain refinement induced by Ce addition has a negligible influence on the tensile strength and yield strength,while the ductility and conductivity can be simultaneously ascended by adding rare earth Ce.The modification of Al_(13)Fe_(4) minority phase is responsible for the increment of ductility,and the diminution of Si solid solubility in the Al matrix leads to the increase of electrical conductivity.This work provides a strategy for concurrently improving the tensile performances and electrical conductivity of aluminum alloy.