The cooperation effects of GA3, IAA and uniconazole-P were studied on the gravitropism and wood formation in Fraxinus mandshurica Rupr. var.japonica Maxim. Seedlings using traditional paraffin section technology. Our ...The cooperation effects of GA3, IAA and uniconazole-P were studied on the gravitropism and wood formation in Fraxinus mandshurica Rupr. var.japonica Maxim. Seedlings using traditional paraffin section technology. Our results are: (1) Gravitropism of stems was strongly inhibited only in B, whereas promoted significantly in D, E, F, H and I treatments; (2) Xylem formation was increased on both sides in H, I and J treatments and on the lower side in E and F which also show the synergistic effect; (3) On the radial direction, cell wall thickness was enhanced on the upper side, whereas decreased on the lower side in C, and was also significantly promoted on the upper in E, G, H, I and J treatments. On the tangential direction, cell wall thickness was increased on the lower side in E, H, I and J treatments respectively; (4) Gelatinous layer of wood fibers was observed on the upper side in all treatments. These results suggest that both GA3 and IAA affected negative gravitropism and wood formation significantly. However, appliedor unapplited-uniconazole-P does not affect G-layer formation, indicating GA does not play the key role on G-layer formation, and ratio of GA3/IAA or IAA may be more important in regulating G-layer formation.展开更多
We investigated the role of GA3, uniconazole-P and IAA on tension wood formation, in particular the vessel features, in Fraxinu smandshurica seedlings. Ninety seedlings were used and treated with applications of GA3 a...We investigated the role of GA3, uniconazole-P and IAA on tension wood formation, in particular the vessel features, in Fraxinu smandshurica seedlings. Ninety seedlings were used and treated with applications of GA3 and/or IAA to the apical bud of the stem using a micropipette. Applications of GA3 or GA3 plus IAA with uniconazole-P strongly increased cell number of tension wood in comparison to that of no-uniconazole-P-applied, indicated that GA3 is more efficient than IAA on xylem cell production. Wood quality was also regulated by relative concentration ratio of GA3 to lAA, because of the vessel elements differentiation, density and size were controlled by GA3 and/or IAA on the different levels. These results suggested that the relative concentration ratio of GA3 to IAA and interactions of them are essential in regulating both wood quality and wood quantity, and tension wood formation in this species.展开更多
To elucidate what controls the magnitude of longitudinal growth stress in tension wood, anatomical measurements of gelatinous fibres were carried out on poplar tension wood (Populus I4551). Sections were cut from embe...To elucidate what controls the magnitude of longitudinal growth stress in tension wood, anatomical measurements of gelatinous fibres were carried out on poplar tension wood (Populus I4551). Sections were cut from embedded blocks to avoid a border artefact described earlier. Results showed that: 1) no gelatinous fibres were observed under a growth strain level from 0.06% to 0.08%; 2) almost all of the non-conductive tissues contained gelatinous fibres above a growth strain level from 0.15% to 0.19%; 3) the amount of fibres, the amount of fibres with gelatinous layer, per unit of tissue area, and the thickness of the gelatinous layers controlled most of the magnitude of growth stress; 4) the contribution of the S2 layer in both fibre types could also play a role in the growth stress generation.展开更多
Populus alba‘Berolinensis’is a fast-growing,high-yielding species with strong biotic and abiotic stress resistance,and widely planted for timber,shelter belts and aesthetic purposes.In this study,molecular developme...Populus alba‘Berolinensis’is a fast-growing,high-yielding species with strong biotic and abiotic stress resistance,and widely planted for timber,shelter belts and aesthetic purposes.In this study,molecular development is explored and the important genes regulating xylem forma-tion in P.alba‘Berolinensis’under artificial bending treat-ments was identified.Anatomical investigation indicated that tension wood(TW)was characterized by eccentric growth of xylem and was enriched in cellulose;the degree of ligni-fication was lower than for normal wood(NW)and oppo-site wood(OW).RNA-Seq-based transcriptome analysis was performed using developing xylem from three wood types(TW,OW and NW).A large number of differentially expressed genes(DEGs)were screened and 4889 counted.In GO and KEGG enrichment results,genes involved in plant hormone signal transduction,phenylpropanoid biosynthesis,and cell wall and secondary cell wall biogenesis play major roles in xylem development under artificial bending.Eight expansin(PalEXP)genes were identified from the RNA-seq data;four were differentially expressed during tension wood formation.Phylogenetic analysis indicated that PalEXLB1 belongs to the EXPB subfamily and that the other PalEXPs are members of the EXPA subfamily.A transcriptional regulatory network construction showed 10 transcription factors located in the first and second layers upstream of EXP,including WRKY,ERF and bHLH.RT‒qPCR analy-sis in leaves,stems and roots combined with transcriptome analysis suggests that PalEXPA2,PalEXPA4 and PalEXPA15 play significant regulatory roles in cell wall formation during tension wood development.The candidate genes involved in xylem cell wall development during tension wood formation marks an important step toward identifying the molecular regulatory mechanism of xylem development and wood property improvement in P.alba‘Berolinensis’.展开更多
In the present study, we Investigated the role of glbberelllc acid (GA3) and Indole acetic acid (IAA) In the gravity response of stems and tension wood formation using two-year-old stems of Fraxinus mandshurica Ru...In the present study, we Investigated the role of glbberelllc acid (GA3) and Indole acetic acid (IAA) In the gravity response of stems and tension wood formation using two-year-old stems of Fraxinus mandshurica Rupr. var. Japonica Maxim seedlings. Forty-five seedlings were used and divided Into nine groups that Included five seedlings In each group. Seedlings were treated with applications of GA3 alone at concentrations of 2.89×10^-8 and 2.89×10^-7 μmol/L, IAA alone at concentrations of 5.71×10^-8 and 5.71×10^-7 μmol/L, or their combination to the apical bud of the stem using a mlcroplpette. Seedlings were positioned horizontally after the first treatment. The same treatments were repeated six times per week. At the end of the experiment, all seedlings were harvested. Then, stem segments were cut under a light microscope. Application of exogenous GA3 at the higher concentration stimulated the upward bending of stems, whereas exogenous IAA had no effect. A synergistic effect of GA3 and IAA on upward stem bending was observed following application of the two combinations of GA3 and IAA. Moreover, application of exogenous GA3 at the higher dose stimulated wood formation on both the upper and lower sides of the stems, whereas the mixture of GA3 and IAA had a synerglstic effect on wood formation In horizontal stems. Application of exogenous IAA alone at the lower concentration (5.71×10^-8 μmol/L) or application of a mixture of the higher concentrations of GA3 (2.89×10^-7 μmol/L) and IAA (5.71×10^-7 μmol/L) Inhibited the development of gelatinous fibers (the G-layer) of tension wood on the upper side of the horizontal stems. The differentiation of gelatinous fibers of tension wood was not Inhibited by GA3 when It was applied alone, whereas the development of the gelatinous fibers of tension wood was strongly affected by the application of IAA. The findings of the present study suggest that the development of the G-layer Is not related to the dose of GA3, but needs a relatively lower concentration of IAA.展开更多
GA3 and GA4 (gibberellins) play an important role in controlling gravitropism and tension wood formation in woody angiosperms. In order to improve our understanding of the role of GA3 and GA4 on xylem cell formation...GA3 and GA4 (gibberellins) play an important role in controlling gravitropism and tension wood formation in woody angiosperms. In order to improve our understanding of the role of GA3 and GA4 on xylem cell formation and the G-layer, we studied the effect of GA3 and GA4 and uniconazole-P, which is an inhibitor of GA biosynthesis, on tension wood formation by gravity in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. Forty seedlings were divided into two groups; one group was placed upright and the other tilted. Each group was further divided into four sub-groups subjected to the following treatments: 3.43 x 10-9 lunol acetone as control, 5.78 x 10-8 lunol gibberellic acid (GA3), 6.21 x 10-8 lunol GA4, and 6.86 x 10-8 lunol uniconazole-P. During the experimental period, GAs-treated seedlings exhibited negative gravitropism, whereas application of uniconazole-P inhibited negative gravitropic stem bending. GA3 and GA4 promoted wood fibers that possessed a gelatinous layer on the upper side, whereas uniconazole-P inhibited wood formation but did not inhibit the differentiation of the gelatinous layer in wood fibers on the upper side. These results suggest that: (i) both the formation of gelatinous fibers and the quantity of xylem production are important for the negative gravitropism in horizontally-positioned seedlings; (ii) GA3 and GA4 affect wood production more than differentiation of the gelatinous layer in wood fibers; G-layer development may be regulated by other hormones via the indirect-role of GA3 and GA4 in horizontally-positioned F. mandshurica seedlings rather than the direct effect of GAs; and (iii) the mechanism for upward wood stem bending is different to the newly developed shoot bending in reaction to gravity in this species.展开更多
Tension wood(TW)is a specialized xylem tissue formed in angiosperm trees under gravitational stimulus or mechanical stresses(e.g.,bending).The genetic regulation that underlies this important mechanism remains poorly ...Tension wood(TW)is a specialized xylem tissue formed in angiosperm trees under gravitational stimulus or mechanical stresses(e.g.,bending).The genetic regulation that underlies this important mechanism remains poorly understood.Here,we used laser capture microdissection of stem xylem cells coupled with full transcriptome RNA-sequencing to analyze TW formation in Populus trichocarpa.After tree bending,PtrLBD39 was the most significantly induced transcription factor gene;it has a phylogenetically paired homolog,PtrLBD22.CRISPR-based knockout of PtrLBD39/22 severely inhibited TW formation,reducing cellulose and increasing lignin content.Transcriptomic analyses of CRISPR-based PtrLBD39/22 double mutants showed that these two genes regulate a set of TW-related genes.Chromatin immunoprecipitation sequencing(ChIP-seq)was used to identify direct targets of PtrLBD39.We integrated transcriptomic analyses and ChIP-seq assays to construct a transcriptional regulatory network(TRN)mediated by PtrLBD39.In this TRN,PtrLBD39 directly regulates 26 novel TW-responsive transcription factor genes.Our work suggests that PtrLBD39 and PtrLBD22 specifically control TW formation by mediating a TW-specific TRN in Populus.展开更多
The effects of ethylene on tension wood formation were studied in 3-year-old Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings in two separate experiments. In experiment 1, ethylene evolution of buds and stems...The effects of ethylene on tension wood formation were studied in 3-year-old Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings in two separate experiments. In experiment 1, ethylene evolution of buds and stems was measured using gas chromatography after 0, 2, 4, 7, 14, and 21 d of treatment; in experiment 2, both aminoethoxyvinylglycine (AVG) and AgNO3 were applied to the horizontally-placed stems, and the cell numbers on sites of applications were measured after 40 d. Ethylene evolution from buds was found to be much greater in tilted seedlings than in upright ones. The cell numbers of wood fibers in shoots and 1-year-old stems were reduced in treatments with 12.5×10^-7μmol/L AVG, 12.5×10^-8μmol/L AVG, and 11.8×10^-8μmol/Lmol/L AgNO3; whereas the horizontal and vertical diameters were reduced by treatment of 12.5×10^-7μmol/L AVG. Ethylene evolutions of shoots and 1-year-old stems were inhibited greatly in comparison with the control by applying 12.5×10^-7μmol/L AVG. The formation of a gelatinous layer of wood fibers was affected by neither AVG nor AgNO3 application. These results suggest that ethylene regulates the quantity of wood production, but does not affect G-layer formation in F. mandshurica Rupr. var.japonica Maxim. seedlings.展开更多
Both of straight and inclining poplar clone 107 tree were selected for studying materials in this paper.The optimal pulping conditions was established by orthogonal experimental design both for normal wood and tension...Both of straight and inclining poplar clone 107 tree were selected for studying materials in this paper.The optimal pulping conditions was established by orthogonal experimental design both for normal wood and tension wood,and the quality of pulping and paper-making between normal wood and tension wood was compared with each other. Finally,potential application for improving paper quality of tension wood through increasing beating revolutions was discussed.The result showed that the optimal cooking condition for normal wood was alkali concentration 15%,the highest temperature 164℃,time at highest temperature 75 min,and for tension wood it was alkali concentration 13%,the highest temperature 160℃,time at highest temperature 40 min.Path coefficient of effect of alkali concentration both on pulp yield and kappa value was significant at different levels.By comparison between average result of normal wood and tension wood in quality of pulping and paper-making,it was found that tension wood had higher pulping yield and lower kappa value than normal wood. Furthermore,for all mechanical properties of paper, normal wood hold higher value than tension wood, and even near two times than tension wood,such as burst index and tensile index.However,difference of tear index was quite narrow.Result of one way ANOVA showed that difference of burst index and tear index between normal wood and tension wood was significant at the 0.001 level,of tear index was significant at the 0.05 level.Based on observation of cross surface of paper,it was assumed that contribution of gelatinous layer to rigidity of single fiber had hampered collapse and compression of fiber during paper formation,which is essential for exerting combination between fibers in paper.So, mechanical properties of tension wood paper were decreased accordingly.However,owing to high cellulose content of gelatinous layer,tension wood was easier to pulping than normal wood.Mechanical properties of tension wood paper could be improved by increasing beating revolutions,the final value even close to normal wood paper.But,the increasing effect had a limit.展开更多
基金This research was supported by the scholarship from the Japanese Ministry of Education (No. 07456073), Scientific Research Foundation for the Returned Oversea Chinese Scholars, State Education Ministry of China, Natural Science Foundation of Tianjin, China (No. 07JCYBJCI2400 and No. 07JCYBJCI2500) and National Key Basic Research Plan Proiect (No. 2007CB 106802).
文摘The cooperation effects of GA3, IAA and uniconazole-P were studied on the gravitropism and wood formation in Fraxinus mandshurica Rupr. var.japonica Maxim. Seedlings using traditional paraffin section technology. Our results are: (1) Gravitropism of stems was strongly inhibited only in B, whereas promoted significantly in D, E, F, H and I treatments; (2) Xylem formation was increased on both sides in H, I and J treatments and on the lower side in E and F which also show the synergistic effect; (3) On the radial direction, cell wall thickness was enhanced on the upper side, whereas decreased on the lower side in C, and was also significantly promoted on the upper in E, G, H, I and J treatments. On the tangential direction, cell wall thickness was increased on the lower side in E, H, I and J treatments respectively; (4) Gelatinous layer of wood fibers was observed on the upper side in all treatments. These results suggest that both GA3 and IAA affected negative gravitropism and wood formation significantly. However, appliedor unapplited-uniconazole-P does not affect G-layer formation, indicating GA does not play the key role on G-layer formation, and ratio of GA3/IAA or IAA may be more important in regulating G-layer formation.
文摘We investigated the role of GA3, uniconazole-P and IAA on tension wood formation, in particular the vessel features, in Fraxinu smandshurica seedlings. Ninety seedlings were used and treated with applications of GA3 and/or IAA to the apical bud of the stem using a micropipette. Applications of GA3 or GA3 plus IAA with uniconazole-P strongly increased cell number of tension wood in comparison to that of no-uniconazole-P-applied, indicated that GA3 is more efficient than IAA on xylem cell production. Wood quality was also regulated by relative concentration ratio of GA3 to lAA, because of the vessel elements differentiation, density and size were controlled by GA3 and/or IAA on the different levels. These results suggested that the relative concentration ratio of GA3 to IAA and interactions of them are essential in regulating both wood quality and wood quantity, and tension wood formation in this species.
文摘To elucidate what controls the magnitude of longitudinal growth stress in tension wood, anatomical measurements of gelatinous fibres were carried out on poplar tension wood (Populus I4551). Sections were cut from embedded blocks to avoid a border artefact described earlier. Results showed that: 1) no gelatinous fibres were observed under a growth strain level from 0.06% to 0.08%; 2) almost all of the non-conductive tissues contained gelatinous fibres above a growth strain level from 0.15% to 0.19%; 3) the amount of fibres, the amount of fibres with gelatinous layer, per unit of tissue area, and the thickness of the gelatinous layers controlled most of the magnitude of growth stress; 4) the contribution of the S2 layer in both fibre types could also play a role in the growth stress generation.
基金funded by the Fundamental Research Funds for the Central Universities(2572019CT02)Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team)The Overseas Expertise Introduction Project for Discipline Innovation(B16010).
文摘Populus alba‘Berolinensis’is a fast-growing,high-yielding species with strong biotic and abiotic stress resistance,and widely planted for timber,shelter belts and aesthetic purposes.In this study,molecular development is explored and the important genes regulating xylem forma-tion in P.alba‘Berolinensis’under artificial bending treat-ments was identified.Anatomical investigation indicated that tension wood(TW)was characterized by eccentric growth of xylem and was enriched in cellulose;the degree of ligni-fication was lower than for normal wood(NW)and oppo-site wood(OW).RNA-Seq-based transcriptome analysis was performed using developing xylem from three wood types(TW,OW and NW).A large number of differentially expressed genes(DEGs)were screened and 4889 counted.In GO and KEGG enrichment results,genes involved in plant hormone signal transduction,phenylpropanoid biosynthesis,and cell wall and secondary cell wall biogenesis play major roles in xylem development under artificial bending.Eight expansin(PalEXP)genes were identified from the RNA-seq data;four were differentially expressed during tension wood formation.Phylogenetic analysis indicated that PalEXLB1 belongs to the EXPB subfamily and that the other PalEXPs are members of the EXPA subfamily.A transcriptional regulatory network construction showed 10 transcription factors located in the first and second layers upstream of EXP,including WRKY,ERF and bHLH.RT‒qPCR analy-sis in leaves,stems and roots combined with transcriptome analysis suggests that PalEXPA2,PalEXPA4 and PalEXPA15 play significant regulatory roles in cell wall formation during tension wood development.The candidate genes involved in xylem cell wall development during tension wood formation marks an important step toward identifying the molecular regulatory mechanism of xylem development and wood property improvement in P.alba‘Berolinensis’.
文摘In the present study, we Investigated the role of glbberelllc acid (GA3) and Indole acetic acid (IAA) In the gravity response of stems and tension wood formation using two-year-old stems of Fraxinus mandshurica Rupr. var. Japonica Maxim seedlings. Forty-five seedlings were used and divided Into nine groups that Included five seedlings In each group. Seedlings were treated with applications of GA3 alone at concentrations of 2.89×10^-8 and 2.89×10^-7 μmol/L, IAA alone at concentrations of 5.71×10^-8 and 5.71×10^-7 μmol/L, or their combination to the apical bud of the stem using a mlcroplpette. Seedlings were positioned horizontally after the first treatment. The same treatments were repeated six times per week. At the end of the experiment, all seedlings were harvested. Then, stem segments were cut under a light microscope. Application of exogenous GA3 at the higher concentration stimulated the upward bending of stems, whereas exogenous IAA had no effect. A synergistic effect of GA3 and IAA on upward stem bending was observed following application of the two combinations of GA3 and IAA. Moreover, application of exogenous GA3 at the higher dose stimulated wood formation on both the upper and lower sides of the stems, whereas the mixture of GA3 and IAA had a synerglstic effect on wood formation In horizontal stems. Application of exogenous IAA alone at the lower concentration (5.71×10^-8 μmol/L) or application of a mixture of the higher concentrations of GA3 (2.89×10^-7 μmol/L) and IAA (5.71×10^-7 μmol/L) Inhibited the development of gelatinous fibers (the G-layer) of tension wood on the upper side of the horizontal stems. The differentiation of gelatinous fibers of tension wood was not Inhibited by GA3 when It was applied alone, whereas the development of the gelatinous fibers of tension wood was strongly affected by the application of IAA. The findings of the present study suggest that the development of the G-layer Is not related to the dose of GA3, but needs a relatively lower concentration of IAA.
基金Supported by a Scholarship from the Japanese Ministry of Education(07456073)Scientific Research Foundation for the Returned Overseas Chinese Scholars.
文摘GA3 and GA4 (gibberellins) play an important role in controlling gravitropism and tension wood formation in woody angiosperms. In order to improve our understanding of the role of GA3 and GA4 on xylem cell formation and the G-layer, we studied the effect of GA3 and GA4 and uniconazole-P, which is an inhibitor of GA biosynthesis, on tension wood formation by gravity in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. Forty seedlings were divided into two groups; one group was placed upright and the other tilted. Each group was further divided into four sub-groups subjected to the following treatments: 3.43 x 10-9 lunol acetone as control, 5.78 x 10-8 lunol gibberellic acid (GA3), 6.21 x 10-8 lunol GA4, and 6.86 x 10-8 lunol uniconazole-P. During the experimental period, GAs-treated seedlings exhibited negative gravitropism, whereas application of uniconazole-P inhibited negative gravitropic stem bending. GA3 and GA4 promoted wood fibers that possessed a gelatinous layer on the upper side, whereas uniconazole-P inhibited wood formation but did not inhibit the differentiation of the gelatinous layer in wood fibers on the upper side. These results suggest that: (i) both the formation of gelatinous fibers and the quantity of xylem production are important for the negative gravitropism in horizontally-positioned seedlings; (ii) GA3 and GA4 affect wood production more than differentiation of the gelatinous layer in wood fibers; G-layer development may be regulated by other hormones via the indirect-role of GA3 and GA4 in horizontally-positioned F. mandshurica seedlings rather than the direct effect of GAs; and (iii) the mechanism for upward wood stem bending is different to the newly developed shoot bending in reaction to gravity in this species.
基金This work was supported by the National Key Research and Development Program of China(no.2016YFD0600106)We also acknowledge financial support from the National Natural Science Foundation of China(grant nos.32001332 and 32001331)+1 种基金the Fundamental Research Funds for the Central Universities of China(grant nos.2572018CL01 and 2572018CL02)the Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team).
文摘Tension wood(TW)is a specialized xylem tissue formed in angiosperm trees under gravitational stimulus or mechanical stresses(e.g.,bending).The genetic regulation that underlies this important mechanism remains poorly understood.Here,we used laser capture microdissection of stem xylem cells coupled with full transcriptome RNA-sequencing to analyze TW formation in Populus trichocarpa.After tree bending,PtrLBD39 was the most significantly induced transcription factor gene;it has a phylogenetically paired homolog,PtrLBD22.CRISPR-based knockout of PtrLBD39/22 severely inhibited TW formation,reducing cellulose and increasing lignin content.Transcriptomic analyses of CRISPR-based PtrLBD39/22 double mutants showed that these two genes regulate a set of TW-related genes.Chromatin immunoprecipitation sequencing(ChIP-seq)was used to identify direct targets of PtrLBD39.We integrated transcriptomic analyses and ChIP-seq assays to construct a transcriptional regulatory network(TRN)mediated by PtrLBD39.In this TRN,PtrLBD39 directly regulates 26 novel TW-responsive transcription factor genes.Our work suggests that PtrLBD39 and PtrLBD22 specifically control TW formation by mediating a TW-specific TRN in Populus.
基金Supported by a scholarship from the Japanese Ministry of Education(07456073)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China,Natural Science Foundation of Tianjin,China (07JCYBJC12400 and 07JCYBJC12500)State Key Basic Research and Development Plan of China (2007CB106802)
文摘The effects of ethylene on tension wood formation were studied in 3-year-old Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings in two separate experiments. In experiment 1, ethylene evolution of buds and stems was measured using gas chromatography after 0, 2, 4, 7, 14, and 21 d of treatment; in experiment 2, both aminoethoxyvinylglycine (AVG) and AgNO3 were applied to the horizontally-placed stems, and the cell numbers on sites of applications were measured after 40 d. Ethylene evolution from buds was found to be much greater in tilted seedlings than in upright ones. The cell numbers of wood fibers in shoots and 1-year-old stems were reduced in treatments with 12.5×10^-7μmol/L AVG, 12.5×10^-8μmol/L AVG, and 11.8×10^-8μmol/Lmol/L AgNO3; whereas the horizontal and vertical diameters were reduced by treatment of 12.5×10^-7μmol/L AVG. Ethylene evolutions of shoots and 1-year-old stems were inhibited greatly in comparison with the control by applying 12.5×10^-7μmol/L AVG. The formation of a gelatinous layer of wood fibers was affected by neither AVG nor AgNO3 application. These results suggest that ethylene regulates the quantity of wood production, but does not affect G-layer formation in F. mandshurica Rupr. var.japonica Maxim. seedlings.
文摘Both of straight and inclining poplar clone 107 tree were selected for studying materials in this paper.The optimal pulping conditions was established by orthogonal experimental design both for normal wood and tension wood,and the quality of pulping and paper-making between normal wood and tension wood was compared with each other. Finally,potential application for improving paper quality of tension wood through increasing beating revolutions was discussed.The result showed that the optimal cooking condition for normal wood was alkali concentration 15%,the highest temperature 164℃,time at highest temperature 75 min,and for tension wood it was alkali concentration 13%,the highest temperature 160℃,time at highest temperature 40 min.Path coefficient of effect of alkali concentration both on pulp yield and kappa value was significant at different levels.By comparison between average result of normal wood and tension wood in quality of pulping and paper-making,it was found that tension wood had higher pulping yield and lower kappa value than normal wood. Furthermore,for all mechanical properties of paper, normal wood hold higher value than tension wood, and even near two times than tension wood,such as burst index and tensile index.However,difference of tear index was quite narrow.Result of one way ANOVA showed that difference of burst index and tear index between normal wood and tension wood was significant at the 0.001 level,of tear index was significant at the 0.05 level.Based on observation of cross surface of paper,it was assumed that contribution of gelatinous layer to rigidity of single fiber had hampered collapse and compression of fiber during paper formation,which is essential for exerting combination between fibers in paper.So, mechanical properties of tension wood paper were decreased accordingly.However,owing to high cellulose content of gelatinous layer,tension wood was easier to pulping than normal wood.Mechanical properties of tension wood paper could be improved by increasing beating revolutions,the final value even close to normal wood paper.But,the increasing effect had a limit.