The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Inst...The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Instagram. While these platforms offer avenues for self-expression and community support, they concurrently harbor negative impacts, fostering antisocial behaviors like phishing, impersonation, hate speech, cyberbullying, cyberstalking, cyberterrorism, fake news propagation, spamming, and fraud. Notably, individuals also leverage these platforms to connect with authorities and seek aid during disasters. The overarching objective of this research is to address the dual nature of network platforms by proposing innovative methodologies aimed at enhancing their positive aspects and mitigating their negative repercussions. To achieve this, the study introduces a weight learning method grounded in multi-linear attribute ranking. This approach serves to evaluate the significance of attribute combinations across all feature spaces. Additionally, a novel clustering method based on tensors is proposed to elevate the quality of clustering while effectively distinguishing selected features. The methodology incorporates a weighted average similarity matrix and optionally integrates weighted Euclidean distance, contributing to a more nuanced understanding of attribute importance. The analysis of the proposed methods yields significant findings. The weight learning method proves instrumental in discerning the importance of attribute combinations, shedding light on key aspects within feature spaces. Simultaneously, the clustering method based on tensors exhibits improved efficacy in enhancing clustering quality and feature distinction. This not only advances our understanding of attribute importance but also paves the way for more nuanced data analysis methodologies. In conclusion, this research underscores the pivotal role of network platforms in contemporary society, emphasizing their potential for both positive contributions and adverse consequences. The proposed methodologies offer novel approaches to address these dualities, providing a foundation for future research and practical applications. Ultimately, this study contributes to the ongoing discourse on optimizing the utility of network platforms while minimizing their negative impacts.展开更多
In the past decade,Social Tagging Systems have attracted increasing attention from both physical and computer science communities.Besides the underlying structure and dynamics of tagging systems,many efforts have been...In the past decade,Social Tagging Systems have attracted increasing attention from both physical and computer science communities.Besides the underlying structure and dynamics of tagging systems,many efforts have been addressed to unify tagging information to reveal user behaviors and preferences,extract the latent semantic relations among items,make recommendations,and so on.Specifically,this article summarizes recent progress about tag-aware recommender systems,emphasizing on the contributions from three mainstream perspectives and approaches:network-based methods,tensor-based methods,and the topic-based methods.Finally,we outline some other tag-related studies and future challenges of tag-aware recommendation algorithms.展开更多
A systematic characterization of the similarities and differences among different methods for detecting structural brain abnormalities in schizophrenia,such as voxel-based morphometry(VBM),tensor-based morphometry(TBM...A systematic characterization of the similarities and differences among different methods for detecting structural brain abnormalities in schizophrenia,such as voxel-based morphometry(VBM),tensor-based morphometry(TBM),and projection-based thickness(PBT),is important for understanding the brain pathology in schizophrenia and for developing effective biomarkers for a diagnosis of schizophrenia.However,such studies are still lacking.Here,we performed VBM,TBM,and PBT analyses on T1-weighted brain MR images acquired from 116 patients with schizophrenia and 116 healthy controls.We found that,although all methods detected wide-spread structural changes,different methods captured different information-only 10.35%of the grey matter changes in cortex were detected by all three methods,and VBM only detected 11.36%of the white matter changes detected by TBM.Further,pattern classification between patients and controls revealed that combining different measures improved the classification accuracy(81.9%),indicating that fusion of different structural measures serves as a better neuroimaging marker for the objective diagnosis of schizophrenia.展开更多
This paper introduces an idea of generating a kernel from an arbitrary function by embedding the training samples into the function.Based on this idea,we present two nonlinear feature extraction methods:generating ker...This paper introduces an idea of generating a kernel from an arbitrary function by embedding the training samples into the function.Based on this idea,we present two nonlinear feature extraction methods:generating kernel principal component analysis(GKPCA)and generating kernel Fisher discriminant(GKFD).These two methods are shown to be equivalent to the function-mapping-space PCA(FMS-PCA)and the function-mapping-space linear discriminant analysis(FMS-LDA)methods,respectively.This equivalence reveals that the generating kernel is actually determined by the corresponding function map.From the generating kernel point of view,we can classify the current kernel Fisher discriminant(KFD)algorithms into two categories:KPCA+LDA based algorithms and straightforward KFD(SKFD)algorithms.The KPCA+LDA based algorithms directly work on the given kernel and are not suitable for non-kernel functions,while the SKFD algorithms essentially work on the generating kernel from a given symmetric function and are therefore suitable for non-kernels as well as kernels.Finally,we outline the tensor-based feature extraction methods and discuss ways of extending tensor-based methods to their generating kernel versions.展开更多
基金sponsored by the National Natural Science Foundation of P.R.China(Nos.62102194 and 62102196)Six Talent Peaks Project of Jiangsu Province(No.RJFW-111)Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.KYCX23_1087 and KYCX22_1027).
文摘The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Instagram. While these platforms offer avenues for self-expression and community support, they concurrently harbor negative impacts, fostering antisocial behaviors like phishing, impersonation, hate speech, cyberbullying, cyberstalking, cyberterrorism, fake news propagation, spamming, and fraud. Notably, individuals also leverage these platforms to connect with authorities and seek aid during disasters. The overarching objective of this research is to address the dual nature of network platforms by proposing innovative methodologies aimed at enhancing their positive aspects and mitigating their negative repercussions. To achieve this, the study introduces a weight learning method grounded in multi-linear attribute ranking. This approach serves to evaluate the significance of attribute combinations across all feature spaces. Additionally, a novel clustering method based on tensors is proposed to elevate the quality of clustering while effectively distinguishing selected features. The methodology incorporates a weighted average similarity matrix and optionally integrates weighted Euclidean distance, contributing to a more nuanced understanding of attribute importance. The analysis of the proposed methods yields significant findings. The weight learning method proves instrumental in discerning the importance of attribute combinations, shedding light on key aspects within feature spaces. Simultaneously, the clustering method based on tensors exhibits improved efficacy in enhancing clustering quality and feature distinction. This not only advances our understanding of attribute importance but also paves the way for more nuanced data analysis methodologies. In conclusion, this research underscores the pivotal role of network platforms in contemporary society, emphasizing their potential for both positive contributions and adverse consequences. The proposed methodologies offer novel approaches to address these dualities, providing a foundation for future research and practical applications. Ultimately, this study contributes to the ongoing discourse on optimizing the utility of network platforms while minimizing their negative impacts.
基金supported by the Future and Emerging Technologies (FET) Programs of the European Commission FP7-COSI-ICT(QLectives with Grant No.231200 and Liquid Pub with Grant No.213360)Z.-K.Zhang and T.Zhou acknowledge the National Natural Science Foundation of China under Grant Nos.11105024,60973069,61103109,and 90924011the Science and Technology Department of Sichuan Province under Grant No.2010HH0002
文摘In the past decade,Social Tagging Systems have attracted increasing attention from both physical and computer science communities.Besides the underlying structure and dynamics of tagging systems,many efforts have been addressed to unify tagging information to reveal user behaviors and preferences,extract the latent semantic relations among items,make recommendations,and so on.Specifically,this article summarizes recent progress about tag-aware recommender systems,emphasizing on the contributions from three mainstream perspectives and approaches:network-based methods,tensor-based methods,and the topic-based methods.Finally,we outline some other tag-related studies and future challenges of tag-aware recommendation algorithms.
基金This work was supported by the National Key Research and Development Program of China(2017 YFC0909201 and 2018YFC1314300)the National Natural Science Foundation of China(81571659,81971694,81971599,81771818,81425013,and 81871052)and the Tianjin Key Technology R&D Program(17ZXMFSY00090).
文摘A systematic characterization of the similarities and differences among different methods for detecting structural brain abnormalities in schizophrenia,such as voxel-based morphometry(VBM),tensor-based morphometry(TBM),and projection-based thickness(PBT),is important for understanding the brain pathology in schizophrenia and for developing effective biomarkers for a diagnosis of schizophrenia.However,such studies are still lacking.Here,we performed VBM,TBM,and PBT analyses on T1-weighted brain MR images acquired from 116 patients with schizophrenia and 116 healthy controls.We found that,although all methods detected wide-spread structural changes,different methods captured different information-only 10.35%of the grey matter changes in cortex were detected by all three methods,and VBM only detected 11.36%of the white matter changes detected by TBM.Further,pattern classification between patients and controls revealed that combining different measures improved the classification accuracy(81.9%),indicating that fusion of different structural measures serves as a better neuroimaging marker for the objective diagnosis of schizophrenia.
基金supported by the Program for New Century Excellent Talents in University of China,the NUST Outstanding Scholar Supporting Program,and the National Natural Science Foundation of China(Grant No.60973098).
文摘This paper introduces an idea of generating a kernel from an arbitrary function by embedding the training samples into the function.Based on this idea,we present two nonlinear feature extraction methods:generating kernel principal component analysis(GKPCA)and generating kernel Fisher discriminant(GKFD).These two methods are shown to be equivalent to the function-mapping-space PCA(FMS-PCA)and the function-mapping-space linear discriminant analysis(FMS-LDA)methods,respectively.This equivalence reveals that the generating kernel is actually determined by the corresponding function map.From the generating kernel point of view,we can classify the current kernel Fisher discriminant(KFD)algorithms into two categories:KPCA+LDA based algorithms and straightforward KFD(SKFD)algorithms.The KPCA+LDA based algorithms directly work on the given kernel and are not suitable for non-kernel functions,while the SKFD algorithms essentially work on the generating kernel from a given symmetric function and are therefore suitable for non-kernels as well as kernels.Finally,we outline the tensor-based feature extraction methods and discuss ways of extending tensor-based methods to their generating kernel versions.