Nd2O3 was used to support Al2O3 and ZnO to prepare a supported solid base catalyst and investigate the effect of catalyst and reaction conditions on the synthesis of tert-butyl acetate. The composited oxide of Nd2O3/A...Nd2O3 was used to support Al2O3 and ZnO to prepare a supported solid base catalyst and investigate the effect of catalyst and reaction conditions on the synthesis of tert-butyl acetate. The composited oxide of Nd2O3/Al2O3-Nd2O3/ZnO exhibited excellent catalytic activity for the synthsis of tert-butyl acetate. The molar ratio of tert-butanol to acetic anhydride is 3∶1, the catalyst in total amount of reactant nearly 0.5%, and reaction time 6 h. With the above conditions, yield of the reaction could reach to 65%. The structure of product were verified by the FT-IR, Element analysis, and MS, which proved that the product was tert-butyl acetate.展开更多
Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCa...Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.展开更多
Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in large...Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.展开更多
Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts we...Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.展开更多
In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosenso...In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosensor.ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant.ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole(Py)monomer using ferric chloride(FeCl3)as an oxidizing agent.The produced materials and the composite films were characterized using X-ray diffraction analysis(XRD),scanning electron microscope(SEM),Fourier transform infrared(FTIR)and thermogravimetric analysis(TGA).Glucose oxidase was successfully immobilized on the surface of the prepared film and then ZnO/Ppy/CA/GOx composite was sputtered with platinum electrode for the current determination at different initial concentrations of glucose.Current measurements proved the suitability and the high sensitivity of the constructed biosensor for the detection of glucose levels in different samples.The performance of the prepared biosensor has been assessed by measuring and comparing glucose concentrations up to 800 ppm.The results affirmed the reliability of the developed biosensor towards real samples which suggests the wide-scale application of the proposed biosensor.展开更多
The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts ...The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.展开更多
The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were ...The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE.展开更多
Objective To evaluate the efficacy of medroxyprogesterone acetate(MA)plus metformin as the primary fertility-sparing treatment for atypical endometrial hyperplasia(AEH)and early-stage grade 1 endometrial adenocarcinom...Objective To evaluate the efficacy of medroxyprogesterone acetate(MA)plus metformin as the primary fertility-sparing treatment for atypical endometrial hyperplasia(AEH)and early-stage grade 1 endometrial adenocarcinoma(G1 EAC)and the recurrence rate after treatment.Methods Sixty patients(aged 20-42 years)with AEH and/or grade 1 EAC limited to the endometrium were enrolled prospectively and randomized into two groups(n=30)to receive oral MA treatment at the daily dose of 160 mg(control)or MA plus oral metformin(850 mg,twice a day)for at least 6 months.The treatment could extend to 12 months until a complete response(CR)was achieved,and follow-up hysteroscopy and curettage were performed every 3 months.For all the patients who achieved CR,endometrial expressions of IGFBP-rP1,p-Akt and p-AMPK were detected immunohistochemically.Results A total of 58 patients completed the treatment.After 9 months of treatment,23(76.7%)patients in the combined treatment group and 20(71.4%)in the control group achieved CR;two patients in the control group achieved CR after converting to the combined treatment.The recurrence rate did not differ significantly between the control group and combined treatment group(30.0%vs 22.7%,P>0.05).Ten(35.7%)patients in the control group experienced significant weight gain of 5.7±6.1 kg,while none of the patients receiving the combined treatment exhibited significant body weight changes.Compared with the control group,the patients receiving the combined treatment showed enhanced endometrial expressions of IGFBP-rP1 and p-AMPK with lowered p-Akt expression.Conclusion Metformin combined with MA may provide an effective option for fertility-sparing treatment of AEH and grade 1 stage IA EAC,and the clinical benefits of metformin for controlling MA-induced weight gain and promoting endometrial expressions of IGFBP-rP1 and p-AMPK while inhibiting p-Akt expression warrants further study.展开更多
Cellulose acetate(CA)is an important cellulose derivative that can undergo thermoplas-tic processing.Plasticizers can form stable hydrogen bonds with CA molecular chains,reducing intermolecular and intramolecular inte...Cellulose acetate(CA)is an important cellulose derivative that can undergo thermoplas-tic processing.Plasticizers can form stable hydrogen bonds with CA molecular chains,reducing intermolecular and intramolecular interactions,and play an important role in the melting processing of CA.In recent years,environmentally friendly plasticizers that are natural,non-toxic,odorless,low dissolution,and low migration have received increas-ing attention in plastic processing.This article reviews the research progress of environ-mentally friendly plasticizers such as natural plasticizers,ionic liquid plasticizers,citrate plasticizers,and polyethylene glycol plasticizers in the processing of cellulose acetate,and looks forward to the application prospects of environmentally friendly plasticizers.展开更多
Prostate cancer is a common malignant tumor of the urinary system in men,and the incidence and detection rate of prostate cancer have been rising significantly in recent years.Androgens play an important role in the o...Prostate cancer is a common malignant tumor of the urinary system in men,and the incidence and detection rate of prostate cancer have been rising significantly in recent years.Androgens play an important role in the occurrence and development of prostate cancer,so hormone deprivation therapy has become an essential means of prostate cancer treatment.Abiraterone acetate is a therapeutic agent for prostate cancer by inhibiting the enzyme activity of CYP17,thereby blocking androgen biosynthesis.In this paper,we present a review of the current mechanism of action of abiraterone acetate for prostate cancer treatment,research progress,and its side effects and limitations.It is expected to provide help for further research on the treatment of prostate cancer.展开更多
This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of...This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of Cu(CH_(3)COO)_(2)by mechanical mixing and incipient wetness impregnation.Four anthracite samples of diferent fraction with d<0.1 mm,d=0.1-0.5 mm,d=0.5-1.0 mm,and d=1.0-2.0 mm were compared.According to EDX mapping,incipient wetness impregnation provides a higher dispersion of the additive and its uniform distribution in the sample.The ignition and combustion characteristics of the modifed anthracite samples were studied by thermal analysis and high-speed video recording of the processes in a combustion chamber(at heating medium temperature of 800℃).It was found that copper acetate increases anthracite reactivity,which was evidenced by decreased onset temperature of combustion(ΔT_(i))by 35-190℃and reduced ignition delay time(Δτ_(i))by 2.1-5.4 s.Copper acetate reduces fuel underburning(on average by 70%)in the ash residue of anthracite and decreases the amount of CO and NO_(x)in gas-phase products(on average by 18.5%and 20.8%,respectively).The mechanism for activation of anthracite combustion by copper acetate is proposed.展开更多
This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome a...This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome and proteome.The quantity of K.marxianus L1-1 varied significantly in the fermentation process of rice-acid soup and the first and third days were the two key turning points in the growth phase of K.marxianus L1-1.Importantly,the concentrations of ethyl acetate,ethanol,acetic acid,and L-lactic acid increased from day 1 to day 3.At least 4231 genes and 2937 proteins were identified and 610 differentially expressed proteins were annotated to 30 Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways based on the analysis results of transcriptome and proteome.The key genes and proteins including up-regulated alcohol dehydrogenase family,alcohol O-acetyltransferase,acetyl-CoA C-acetyltransferase,acyl-coenzyme A thioester hydrolase,and down-regulated aldehyde dehydrogenase family were involved in glycolysis/gluconeogenesis pathways,starch and sucrose metabolism pathways,amino sugar and nucleotide sugar metabolism pathways,tricarboxylic acid(TCA)cycle,and pyruvate metabolism pathways,thus promoting the formation of ethyl acetate,organic acids,alcohols,and other esters.Our results revealed the formation mechanisms of ethyl acetate and organic acids in rice-acid soup inoculated with K.marxianus L1-1.展开更多
Cellulose acetate butyrate(CAB)is a cellulose ester that is commonly used in applications such as coatings and leather brighteners.However,its appearance in a fibrous form is rarely reported.CAB porous micro/nanofibro...Cellulose acetate butyrate(CAB)is a cellulose ester that is commonly used in applications such as coatings and leather brighteners.However,its appearance in a fibrous form is rarely reported.CAB porous micro/nanofibrous membranes with a large number of nanopores on the fiber surface were successfully prepared by electrospinning with dichloromethane(DCM)/acetone(AC)as the mixed solvent.Apparent morphology,porosity,moisture permeability,air permeability,static water contact angles,and thermal conductivity of the fibrous membranes were investigated at different spinning voltages.The results showed that with the increase of the spinning voltage,the average fiber diameter of the CAB porous micro/nanofibrous membranes gradually decreased and the fiber diameter distribution was more uniform.When the spinning voltage reached 40 kV,the porosity reached 91.38%,the moisture permeability was up to 7430 g/(m^(2)·d),the air permeability was up to 36.289 mm/s,the static water contact angle was up to 145.0°,while the thermal conductivity of the fibrous membranes reached 0.030 W/(m·K).The material can be applied as thermal-insulation,waterproof and moisture-permeable membranes.展开更多
Original statement in Section 3.5:3.5.GB7 acetate reduced the mobility and invasion of HCT 116 cells The wound healing assay showed that GB7 acetate significantly decreased the migration area of HCT 116 cells when com...Original statement in Section 3.5:3.5.GB7 acetate reduced the mobility and invasion of HCT 116 cells The wound healing assay showed that GB7 acetate significantly decreased the migration area of HCT 116 cells when compared with the control group(P<0.05)(Figs.5A and B).Wound healing of 34%e43%was observed after 24 h and 48 h in untreated cancer cells,whereas 10%e21%were seen in the 100 and 150 mg/mL GB7 acetate groups.展开更多
Polyvinyl alcohol (PVA) colloid stabilized Polyvinyl acetate (PVAc) based wood adhesive has poor performance in highly humid conditions. Currently, the addition of natural fillers in the wood adhesive is one of the mo...Polyvinyl alcohol (PVA) colloid stabilized Polyvinyl acetate (PVAc) based wood adhesive has poor performance in highly humid conditions. Currently, the addition of natural fillers in the wood adhesive is one of the most effective ways to enhance the performance of PVAc wood adhesive in highly moist conditions. Microcrystalline cellulose (MCC) are strong renewable, bio-based material and has great potential in a reinforcement of the polymeric matrix. Hence, the present work investigates the applicability of microcrystalline cellulose incorporated 3% and 5% in situ emulsion polymerization PVAc wood adhesives. Effect on physical, thermal and mechanical properties was studied by viscosity, pH, contact angle measurement, differential scanning calorimetry (DSC) and pencil hardness test of films. Emulsions with different proportions of MCC were prepared and the shear strength of the applied adhesive on wood was measured. The viscosity of the adhesives was increased by increasing the concentration of MCC. The mechanical properties like tensile strength of adhesives with MCC were measured by universal tensile machine (UTM). Thermal stability was studied by differential scanning calorimetry (DSC). The tensile shear strength demonstrates that MCC can improve bonding strength as compared to PVAc Homo based adhesive in the wet condition which was validated through a contact angle study. The hardness of PVAc films were also changed positively by the addition of MCC. Here, we studied the effect of the addition of different concentrations of MCC materials in situ polymerization of PVAc on their performance properties.展开更多
A novel copper(Ⅱ) complex with tert-butyl 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyamino]acetate(ampy) was synthesized and structurally characterized by elemental analysis, FT-IR spectrum, electrospray ioniza...A novel copper(Ⅱ) complex with tert-butyl 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyamino]acetate(ampy) was synthesized and structurally characterized by elemental analysis, FT-IR spectrum, electrospray ionization-mass spectrometry, UV-vis spectrum and single-crystal X-ray diffraction, respectively. A mononuclear copper(II) complex with ampy, [Cu(ampy)Cl2](1), was formed irrespective of the metal-to-ligand molar ratios([Cu2+]:[ampy] = 0.5:1, 1:1, and 2:1) as a single product. Complex 1 crystallizes in the orthorhombic system, space group Pbca with a = 12.343(2), b = 18.928(3), c = 20.058(4) A, V = 4686.1(14) A3, Z = 8, Dc = 1.3349(4) g/cm3, F(000) = 1920, S = 1.016, R = 0.0693 and w R = 0.1721 for 3151 observed reflections with I 〉 2σ(I). X-ray diffraction analysis reveals that the central copper(II) ion is bound by pyridyl N, tertiary amine N and carbonyl O atoms of the quadridentate ampy as well as two Cl anions, constructing a slightly distorted octahedral geometry. Complex 1 further constructs a stable 3D supramolecular architecture by intermolecular C–H…Cl hydrogen bonds. In addition, the molecular geometry was calculated by density functional theory(DFT/B3LYP) method with the basis sets(6-31+G(d,p) for H, C, N, O and Cl atoms, and LANL2 DZ for Cu atom, respectively). The calculated results show that the optimized geometrical parameters are in good agreement with the experimental data. Natural bond orbital(NBO) analysis and frontier molecular orbitals(FMOs) analysis were investigated at the same level.展开更多
The catalytic packing is the core component of the catalytic distillation,and how the catalyst exists in the packing has significant influence on the process.To investigate the effect of catalyst packings on the catal...The catalytic packing is the core component of the catalytic distillation,and how the catalyst exists in the packing has significant influence on the process.To investigate the effect of catalyst packings on the catalytic distillation process,the classical ethyl acetate reactive distillation system was utilized,and a supported catalytic packing(SCP)was prepared in comparison with the conventional tea-bag catalytic packing(TBP).Laboratory scale experiments showed that the ethyl acetate conversion of the SCP was superior to the TBP at a low catalyst loading.The effects of reaction kinetics,mass transfer performance and actual catalytic efficiency of the packings on this process were regarded as reasons and studied by combining the experiments and numerical simulation.Results suggested that the relatively immediate“in-situ separation”caused by the rapid reaction kinetics and better mass transfer performance of SCP may be a main reason for the difference of the conversion.展开更多
The“shuttle effect”of polysulfides hampers the commercialization of lithium-sulfur(Li-S)batteries.Here,a thin molecular sieve film was decorated on the surface of an electrospun cellulose acetate(CA)membrane derived...The“shuttle effect”of polysulfides hampers the commercialization of lithium-sulfur(Li-S)batteries.Here,a thin molecular sieve film was decorated on the surface of an electrospun cellulose acetate(CA)membrane derived from recycled cigarette filters,where the truncated cone structureβ-cyclodextrin(β-CD)was selected as the building block to physically block and chemically trap polysulfides while simultaneously dramatically speeding up ion transport.Furthermore,on theβ-CD free side of the separator facing the cathode,graphite carbon(C)was sputtered as an upper current collector,which barely increases the thickness.These benefits result in an initial discharge performance of 1378.24 mAh g^(−1) and long-term cycling stability of 863.78 mAh g^(−1) after 1000 cycles at 0.2 C for the battery with theβ-CD/CA/C separator,which is more than three times that of the PP separator after 500 cycles.Surprisingly,the funnel-type channel ofβ-CD generates a differential ionic fluid pressure on both sides,speeding up ion transport by up to 69%,and a 65.3%faster charging rate of 9484 mA g^(−1) was achieved.The“funnel effect”of a separator is regarded as a novel and high-efficiency solution for fast charging of Li-S and other lithium secondary batteries.展开更多
Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate ...Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.展开更多
The sweet potato weevil(Cylas formicarius(Fab.)(Coleoptera: Brentidae)) is a pest that feeds on sweet potato(Ipomoea batatas(L.) Lam.(Solanales: Convolvulaceae)), causing substantial economic losses annually. However,...The sweet potato weevil(Cylas formicarius(Fab.)(Coleoptera: Brentidae)) is a pest that feeds on sweet potato(Ipomoea batatas(L.) Lam.(Solanales: Convolvulaceae)), causing substantial economic losses annually. However, no safe and effective methods have been found to protect sweet potato from this pest. Herbivore-induced plant volatiles(HIPVs)promote various defensive bioactivities, but their formation and the defense mechanisms in sweet potato have not been investigated. To identify the defensive HIPVs in sweet potato, the release dynamics of volatiles was monitored.The biosynthetic pathways and regulatory factors of the candidate HIPVs were revealed via stable isotope tracing and analyses at the transcriptional and metabolic levels. Finally, the anti-insect activities and the defense mechanisms of the gaseous candidates were evaluated. The production of(Z)-3-hexenyl acetate(z3HAC) and allo-ocimene was induced by sweet potato weevil feeding, with a distinct circadian rhythm. Ipomoea batatas ocimene synthase(IbOS) is first reported here as a key gene in allo-ocimene synthesis. Insect-induced wounding promoted the production of the substrate,(Z)-3-hexenol, and upregulated the expression of IbOS, which resulted in higher contents of z3HAC and allo-ocimene,respectively. Gaseous z3HAC and allo-ocimene primed nearby plants to defend themselves against sweet potato weevils. These results provide important data regarding the formation, regulation, and signal transduction mechanisms of defensive volatiles in sweet potato, with potential implications for improving sweet potato weevil management strategies.展开更多
文摘Nd2O3 was used to support Al2O3 and ZnO to prepare a supported solid base catalyst and investigate the effect of catalyst and reaction conditions on the synthesis of tert-butyl acetate. The composited oxide of Nd2O3/Al2O3-Nd2O3/ZnO exhibited excellent catalytic activity for the synthsis of tert-butyl acetate. The molar ratio of tert-butanol to acetic anhydride is 3∶1, the catalyst in total amount of reactant nearly 0.5%, and reaction time 6 h. With the above conditions, yield of the reaction could reach to 65%. The structure of product were verified by the FT-IR, Element analysis, and MS, which proved that the product was tert-butyl acetate.
基金This work was supported financially by Korea Environment Industry&Technology Institute through Project to make multi-ministerial national biological research resources more advanced program,funded by Korea Ministry of Environment(grant number RS-2023-00230403).
文摘Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.
基金supported by the Double Support Project (035–2221993229)。
文摘Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.
基金supported by the National Science Foundation of China(21776268,21721004,22108274 and 22378383)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21060200)support provided by Shanxi Yanchang Petroleum(Group)Co.,Ltd.(yc-hw-2022ky-02).
文摘Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.
文摘In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosensor.ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant.ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole(Py)monomer using ferric chloride(FeCl3)as an oxidizing agent.The produced materials and the composite films were characterized using X-ray diffraction analysis(XRD),scanning electron microscope(SEM),Fourier transform infrared(FTIR)and thermogravimetric analysis(TGA).Glucose oxidase was successfully immobilized on the surface of the prepared film and then ZnO/Ppy/CA/GOx composite was sputtered with platinum electrode for the current determination at different initial concentrations of glucose.Current measurements proved the suitability and the high sensitivity of the constructed biosensor for the detection of glucose levels in different samples.The performance of the prepared biosensor has been assessed by measuring and comparing glucose concentrations up to 800 ppm.The results affirmed the reliability of the developed biosensor towards real samples which suggests the wide-scale application of the proposed biosensor.
基金financially supported by the National Key R&D Program of China (2021YFA1501700)the National Science Foundation of China (22272114)+4 种基金the Fundamental Research Funds from Sichuan University (2022SCUNL103)the Funding for Hundred Talent Program of Sichuan University (20822041E4079)the NSFC (22102018 and 52171201)the Huzhou Science and Technology Bureau (2022GZ45)the Hefei National Research Center for Physical Sciences at the Microscale (KF2021005)。
文摘The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.
文摘The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE.
文摘Objective To evaluate the efficacy of medroxyprogesterone acetate(MA)plus metformin as the primary fertility-sparing treatment for atypical endometrial hyperplasia(AEH)and early-stage grade 1 endometrial adenocarcinoma(G1 EAC)and the recurrence rate after treatment.Methods Sixty patients(aged 20-42 years)with AEH and/or grade 1 EAC limited to the endometrium were enrolled prospectively and randomized into two groups(n=30)to receive oral MA treatment at the daily dose of 160 mg(control)or MA plus oral metformin(850 mg,twice a day)for at least 6 months.The treatment could extend to 12 months until a complete response(CR)was achieved,and follow-up hysteroscopy and curettage were performed every 3 months.For all the patients who achieved CR,endometrial expressions of IGFBP-rP1,p-Akt and p-AMPK were detected immunohistochemically.Results A total of 58 patients completed the treatment.After 9 months of treatment,23(76.7%)patients in the combined treatment group and 20(71.4%)in the control group achieved CR;two patients in the control group achieved CR after converting to the combined treatment.The recurrence rate did not differ significantly between the control group and combined treatment group(30.0%vs 22.7%,P>0.05).Ten(35.7%)patients in the control group experienced significant weight gain of 5.7±6.1 kg,while none of the patients receiving the combined treatment exhibited significant body weight changes.Compared with the control group,the patients receiving the combined treatment showed enhanced endometrial expressions of IGFBP-rP1 and p-AMPK with lowered p-Akt expression.Conclusion Metformin combined with MA may provide an effective option for fertility-sparing treatment of AEH and grade 1 stage IA EAC,and the clinical benefits of metformin for controlling MA-induced weight gain and promoting endometrial expressions of IGFBP-rP1 and p-AMPK while inhibiting p-Akt expression warrants further study.
文摘Cellulose acetate(CA)is an important cellulose derivative that can undergo thermoplas-tic processing.Plasticizers can form stable hydrogen bonds with CA molecular chains,reducing intermolecular and intramolecular interactions,and play an important role in the melting processing of CA.In recent years,environmentally friendly plasticizers that are natural,non-toxic,odorless,low dissolution,and low migration have received increas-ing attention in plastic processing.This article reviews the research progress of environ-mentally friendly plasticizers such as natural plasticizers,ionic liquid plasticizers,citrate plasticizers,and polyethylene glycol plasticizers in the processing of cellulose acetate,and looks forward to the application prospects of environmentally friendly plasticizers.
文摘Prostate cancer is a common malignant tumor of the urinary system in men,and the incidence and detection rate of prostate cancer have been rising significantly in recent years.Androgens play an important role in the occurrence and development of prostate cancer,so hormone deprivation therapy has become an essential means of prostate cancer treatment.Abiraterone acetate is a therapeutic agent for prostate cancer by inhibiting the enzyme activity of CYP17,thereby blocking androgen biosynthesis.In this paper,we present a review of the current mechanism of action of abiraterone acetate for prostate cancer treatment,research progress,and its side effects and limitations.It is expected to provide help for further research on the treatment of prostate cancer.
文摘This paper addressed the efect of copper acetate on the combustion characteristics of anthracite depending on the fractional composition of fuel and additive introduction method.Anthracite was impregnated with 5 wt%of Cu(CH_(3)COO)_(2)by mechanical mixing and incipient wetness impregnation.Four anthracite samples of diferent fraction with d<0.1 mm,d=0.1-0.5 mm,d=0.5-1.0 mm,and d=1.0-2.0 mm were compared.According to EDX mapping,incipient wetness impregnation provides a higher dispersion of the additive and its uniform distribution in the sample.The ignition and combustion characteristics of the modifed anthracite samples were studied by thermal analysis and high-speed video recording of the processes in a combustion chamber(at heating medium temperature of 800℃).It was found that copper acetate increases anthracite reactivity,which was evidenced by decreased onset temperature of combustion(ΔT_(i))by 35-190℃and reduced ignition delay time(Δτ_(i))by 2.1-5.4 s.Copper acetate reduces fuel underburning(on average by 70%)in the ash residue of anthracite and decreases the amount of CO and NO_(x)in gas-phase products(on average by 18.5%and 20.8%,respectively).The mechanism for activation of anthracite combustion by copper acetate is proposed.
基金financially supported by National Natural Science Foundation of China (32060530)Guizhou University, Gui Da Te Gang He Zi (2022) 39, Technology platform and talent team plan of Guizhou. China ((2018)5251)+2 种基金Graduate Research Fund Project of Guizhou (YJSCXJH(2019]028)Industry-University-Research Cooperation Project of Guizhou (701/700465172217)China Scholarship Council (201906670006)
文摘This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome and proteome.The quantity of K.marxianus L1-1 varied significantly in the fermentation process of rice-acid soup and the first and third days were the two key turning points in the growth phase of K.marxianus L1-1.Importantly,the concentrations of ethyl acetate,ethanol,acetic acid,and L-lactic acid increased from day 1 to day 3.At least 4231 genes and 2937 proteins were identified and 610 differentially expressed proteins were annotated to 30 Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways based on the analysis results of transcriptome and proteome.The key genes and proteins including up-regulated alcohol dehydrogenase family,alcohol O-acetyltransferase,acetyl-CoA C-acetyltransferase,acyl-coenzyme A thioester hydrolase,and down-regulated aldehyde dehydrogenase family were involved in glycolysis/gluconeogenesis pathways,starch and sucrose metabolism pathways,amino sugar and nucleotide sugar metabolism pathways,tricarboxylic acid(TCA)cycle,and pyruvate metabolism pathways,thus promoting the formation of ethyl acetate,organic acids,alcohols,and other esters.Our results revealed the formation mechanisms of ethyl acetate and organic acids in rice-acid soup inoculated with K.marxianus L1-1.
基金National Natural Science Foundation of China(No.52203056)。
文摘Cellulose acetate butyrate(CAB)is a cellulose ester that is commonly used in applications such as coatings and leather brighteners.However,its appearance in a fibrous form is rarely reported.CAB porous micro/nanofibrous membranes with a large number of nanopores on the fiber surface were successfully prepared by electrospinning with dichloromethane(DCM)/acetone(AC)as the mixed solvent.Apparent morphology,porosity,moisture permeability,air permeability,static water contact angles,and thermal conductivity of the fibrous membranes were investigated at different spinning voltages.The results showed that with the increase of the spinning voltage,the average fiber diameter of the CAB porous micro/nanofibrous membranes gradually decreased and the fiber diameter distribution was more uniform.When the spinning voltage reached 40 kV,the porosity reached 91.38%,the moisture permeability was up to 7430 g/(m^(2)·d),the air permeability was up to 36.289 mm/s,the static water contact angle was up to 145.0°,while the thermal conductivity of the fibrous membranes reached 0.030 W/(m·K).The material can be applied as thermal-insulation,waterproof and moisture-permeable membranes.
文摘Original statement in Section 3.5:3.5.GB7 acetate reduced the mobility and invasion of HCT 116 cells The wound healing assay showed that GB7 acetate significantly decreased the migration area of HCT 116 cells when compared with the control group(P<0.05)(Figs.5A and B).Wound healing of 34%e43%was observed after 24 h and 48 h in untreated cancer cells,whereas 10%e21%were seen in the 100 and 150 mg/mL GB7 acetate groups.
文摘Polyvinyl alcohol (PVA) colloid stabilized Polyvinyl acetate (PVAc) based wood adhesive has poor performance in highly humid conditions. Currently, the addition of natural fillers in the wood adhesive is one of the most effective ways to enhance the performance of PVAc wood adhesive in highly moist conditions. Microcrystalline cellulose (MCC) are strong renewable, bio-based material and has great potential in a reinforcement of the polymeric matrix. Hence, the present work investigates the applicability of microcrystalline cellulose incorporated 3% and 5% in situ emulsion polymerization PVAc wood adhesives. Effect on physical, thermal and mechanical properties was studied by viscosity, pH, contact angle measurement, differential scanning calorimetry (DSC) and pencil hardness test of films. Emulsions with different proportions of MCC were prepared and the shear strength of the applied adhesive on wood was measured. The viscosity of the adhesives was increased by increasing the concentration of MCC. The mechanical properties like tensile strength of adhesives with MCC were measured by universal tensile machine (UTM). Thermal stability was studied by differential scanning calorimetry (DSC). The tensile shear strength demonstrates that MCC can improve bonding strength as compared to PVAc Homo based adhesive in the wet condition which was validated through a contact angle study. The hardness of PVAc films were also changed positively by the addition of MCC. Here, we studied the effect of the addition of different concentrations of MCC materials in situ polymerization of PVAc on their performance properties.
基金supported by the National Basic Research Program of China(No.2014CB643401)the National Natural Science Foundation of China(Nos.51134007 and 51474256)
文摘A novel copper(Ⅱ) complex with tert-butyl 2-[N-(tert-butyloxycarbonylmethyl)-2-picolyamino]acetate(ampy) was synthesized and structurally characterized by elemental analysis, FT-IR spectrum, electrospray ionization-mass spectrometry, UV-vis spectrum and single-crystal X-ray diffraction, respectively. A mononuclear copper(II) complex with ampy, [Cu(ampy)Cl2](1), was formed irrespective of the metal-to-ligand molar ratios([Cu2+]:[ampy] = 0.5:1, 1:1, and 2:1) as a single product. Complex 1 crystallizes in the orthorhombic system, space group Pbca with a = 12.343(2), b = 18.928(3), c = 20.058(4) A, V = 4686.1(14) A3, Z = 8, Dc = 1.3349(4) g/cm3, F(000) = 1920, S = 1.016, R = 0.0693 and w R = 0.1721 for 3151 observed reflections with I 〉 2σ(I). X-ray diffraction analysis reveals that the central copper(II) ion is bound by pyridyl N, tertiary amine N and carbonyl O atoms of the quadridentate ampy as well as two Cl anions, constructing a slightly distorted octahedral geometry. Complex 1 further constructs a stable 3D supramolecular architecture by intermolecular C–H…Cl hydrogen bonds. In addition, the molecular geometry was calculated by density functional theory(DFT/B3LYP) method with the basis sets(6-31+G(d,p) for H, C, N, O and Cl atoms, and LANL2 DZ for Cu atom, respectively). The calculated results show that the optimized geometrical parameters are in good agreement with the experimental data. Natural bond orbital(NBO) analysis and frontier molecular orbitals(FMOs) analysis were investigated at the same level.
基金support provided by National Natural Science Foundation of China(21978243).
文摘The catalytic packing is the core component of the catalytic distillation,and how the catalyst exists in the packing has significant influence on the process.To investigate the effect of catalyst packings on the catalytic distillation process,the classical ethyl acetate reactive distillation system was utilized,and a supported catalytic packing(SCP)was prepared in comparison with the conventional tea-bag catalytic packing(TBP).Laboratory scale experiments showed that the ethyl acetate conversion of the SCP was superior to the TBP at a low catalyst loading.The effects of reaction kinetics,mass transfer performance and actual catalytic efficiency of the packings on this process were regarded as reasons and studied by combining the experiments and numerical simulation.Results suggested that the relatively immediate“in-situ separation”caused by the rapid reaction kinetics and better mass transfer performance of SCP may be a main reason for the difference of the conversion.
基金the Jiangsu Provincial Key Research and Development Program(BE2017060)the China Postdoctoral Science Foundation(169483)the 111 Project(B17021)。
文摘The“shuttle effect”of polysulfides hampers the commercialization of lithium-sulfur(Li-S)batteries.Here,a thin molecular sieve film was decorated on the surface of an electrospun cellulose acetate(CA)membrane derived from recycled cigarette filters,where the truncated cone structureβ-cyclodextrin(β-CD)was selected as the building block to physically block and chemically trap polysulfides while simultaneously dramatically speeding up ion transport.Furthermore,on theβ-CD free side of the separator facing the cathode,graphite carbon(C)was sputtered as an upper current collector,which barely increases the thickness.These benefits result in an initial discharge performance of 1378.24 mAh g^(−1) and long-term cycling stability of 863.78 mAh g^(−1) after 1000 cycles at 0.2 C for the battery with theβ-CD/CA/C separator,which is more than three times that of the PP separator after 500 cycles.Surprisingly,the funnel-type channel ofβ-CD generates a differential ionic fluid pressure on both sides,speeding up ion transport by up to 69%,and a 65.3%faster charging rate of 9484 mA g^(−1) was achieved.The“funnel effect”of a separator is regarded as a novel and high-efficiency solution for fast charging of Li-S and other lithium secondary batteries.
基金the National Natural Science Foundation of China (No.51673059)the Science and Technology Planning Project of Henan Province (No. 212102210636)the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices (East China University of Technology)。
文摘Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.
基金supported by the National Natural Science Foundation of China–Guangdong Natural Science Foundation Joint Project (U1701234)。
文摘The sweet potato weevil(Cylas formicarius(Fab.)(Coleoptera: Brentidae)) is a pest that feeds on sweet potato(Ipomoea batatas(L.) Lam.(Solanales: Convolvulaceae)), causing substantial economic losses annually. However, no safe and effective methods have been found to protect sweet potato from this pest. Herbivore-induced plant volatiles(HIPVs)promote various defensive bioactivities, but their formation and the defense mechanisms in sweet potato have not been investigated. To identify the defensive HIPVs in sweet potato, the release dynamics of volatiles was monitored.The biosynthetic pathways and regulatory factors of the candidate HIPVs were revealed via stable isotope tracing and analyses at the transcriptional and metabolic levels. Finally, the anti-insect activities and the defense mechanisms of the gaseous candidates were evaluated. The production of(Z)-3-hexenyl acetate(z3HAC) and allo-ocimene was induced by sweet potato weevil feeding, with a distinct circadian rhythm. Ipomoea batatas ocimene synthase(IbOS) is first reported here as a key gene in allo-ocimene synthesis. Insect-induced wounding promoted the production of the substrate,(Z)-3-hexenol, and upregulated the expression of IbOS, which resulted in higher contents of z3HAC and allo-ocimene,respectively. Gaseous z3HAC and allo-ocimene primed nearby plants to defend themselves against sweet potato weevils. These results provide important data regarding the formation, regulation, and signal transduction mechanisms of defensive volatiles in sweet potato, with potential implications for improving sweet potato weevil management strategies.