This work presents a new analytical method to analyze the influence of reaction piles on the test pile response in a static load test.In our method,the interactive effect between soil and pile is simulated using indep...This work presents a new analytical method to analyze the influence of reaction piles on the test pile response in a static load test.In our method,the interactive effect between soil and pile is simulated using independent springs and the shear displacement method is adopted to analyze the influence of reaction piles on test pile response.Moreover,the influence of the sheltering effect between reaction piles and test pile on the test pile response is taken into account.Two cases are analyzed to verify the rationality and efficiency of the present method.This method can be easily extended to a nonlinear response of an influenced test pile embedded in a multilayered soil,and the validity is also demonstrated using centrifuge model tests and a computer program presented in the literature.The present analyses indicate that the proposed method will lead to an underestimation of the test pile settlement in a static load test if the influence of the presence of reaction piles on the test pile response is neglected.展开更多
Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under...Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder.展开更多
In this paper,the soil-pile system of O-cell test of pile is simplified as an axi-symmetric problem.By using aggregation of quadrilateral isoparametric elements to simulate pile and soil,setting Goodman's elements...In this paper,the soil-pile system of O-cell test of pile is simplified as an axi-symmetric problem.By using aggregation of quadrilateral isoparametric elements to simulate pile and soil,setting Goodman's elements between pile and soils,a method of numerical simulation analysis on O-cell test of pile is presented with the consideration of nonlinear mechanical behavior of soils and pile-soil interface.The method is applied to the analysis of a case of O-cell test of pile.The load-displacement curves and axial force curves of upper pile and lower pile obtained from the O-cell test of pile are fitted,and parameters of the mechanical model of soils and interface are determined.Analysis results validate that the numerical simulation analysis method put forward in this paper is applicable.Furthermore,the interaction and influence of upper pile and lower pile in the O-cell test are also studied with the method.The result shows that if load box is located in a soil layer with fine mechanical behavior,the interaction of upper pile and lower pile in O-cell test can be ignored generally.展开更多
Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is...Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks,the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed,and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake,with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface,while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure,local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside,and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs,the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated.展开更多
This paper reports in situ tension test and laboratory model test for large diameter, manually digging anchorage piles in the 2nd Luzhou Changjiang Bridge. Tension behavior, uplift bearing capacity and influenc...This paper reports in situ tension test and laboratory model test for large diameter, manually digging anchorage piles in the 2nd Luzhou Changjiang Bridge. Tension behavior, uplift bearing capacity and influence of rock characteristics on bearing capacity are discussed. Proposes are presented with respect to issues related to the construction and design of uplift piles.展开更多
The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defec...The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defects of the pile is very important. As so far, there are some difficult problems in pile defect detection. Based on stress wave theory, some of these typical difficult problems were studied through model tests. The analyses of the test results are carried out and some significant results of the low-strain method are obtained, when a pile has a gradually-decreasing crosssection part, the amplitude of the reflective signal originating from the defect is dependent on the decreasing value of the rate of crosssection β. No apparent signal reflected from the necking appeares on the velocity response curve when the value of β is less than about 3. 5 %.展开更多
In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d c...In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d cone p e n e tra tio nte s t (CPT) resu lts w ere used as in p u t variables for pred ictio n o f pile bearin g capacity. The d ata u se d w erecollected from th e existing litera tu re an d consisted o f 50 case records. The application o f LSSVM w ascarried o u t by dividing th e d ata into th re e se ts: a train in g se t for learning th e pro b lem an d obtain in g arelationship b e tw e e n in p u t variables an d pile bearin g capacity, and testin g an d validation sets forevaluation o f th e predictive an d g en eralization ability o f th e o b tain ed relationship. The predictions o f pilebearing capacity by LSSVM w ere evaluated by com paring w ith ex p erim en tal d ata an d w ith th o se bytrad itio n al CPT-based m eth o d s and th e gene ex pression pro g ram m in g (GEP) m odel. It w as found th a t th eLSSVM perform s w ell w ith coefficient o f d eterm in atio n , m ean, an d sta n d ard dev iatio n equivalent to 0.99,1.03, an d 0.08, respectively, for th e testin g set, an d 1, 1.04, an d 0.11, respectively, for th e v alidation set. Thelow values o f th e calculated m ean squared e rro r an d m ean ab so lu te e rro r indicated th a t th e LSSVM w asaccurate in p redicting th e pile bearing capacity. The results o f com parison also show ed th a t th e p roposedalg o rith m p red icted th e pile bearin g capacity m ore accurately th a n th e trad itio n al m eth o d s including th eGEP m odel.展开更多
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a...This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.展开更多
Recently a research team at Ohio University,USA,conducted a unique full-scale feld load test to simulate the aeration pipe installations at a copper extraction mine operated in Chile.The overliner material taken from ...Recently a research team at Ohio University,USA,conducted a unique full-scale feld load test to simulate the aeration pipe installations at a copper extraction mine operated in Chile.The overliner material taken from the mine was used in recreating the in situ conditions.Electric heaters were utilized to raise the temperature inside each pipe to simulate the essential element of the copper extraction process.The maximum vertical deflection reached by the test pipes was close to 20%,when the simulated heap pile height was 80 m.The plastic pipes and the overliner material were also tested in the laboratory.Based on the results,the maximum heap pile fll depth was recommended for the aeration system.The results indicated that the vertical deflection was the primary performance index for the aeration pipes installed in heap piles at mines.Lastly,the pipe made of polypropylene resin was super.展开更多
Cement-mixed piles,as countermeasure against liquefaction of silt and sand ground,can improve the shear strength and bearing capacity of foundation soil,meaning cement-mixed piles are capable of resisting displacement...Cement-mixed piles,as countermeasure against liquefaction of silt and sand ground,can improve the shear strength and bearing capacity of foundation soil,meaning cement-mixed piles are capable of resisting displacement when an earthquake happens. However,investigations of cement-mixed piles by experimental methods such as the shaking table test is few and far between. It is especially true for the seismic performance of cement-mixed piles in liquefiable railway foundations in high seismic intensity regions. To this end,a cross-section of the Yuxi-Mengzi railway was selected as the prototype and studied by the shaking table test in this study. The results showed that composite foundation of cementmixed piles was not liquefied when the seismic acceleration was lower than 0. 30g. In the process of acceleration increasing from 0. 30g at 2Hz to 0. 60g at 3Hz,the upper middle silt outside slope toe was partly liquefied. The foundation soil under the shoulders and center of subgrade was far from the initial liquefaction criterion during the test. Cementmixed piles can effectively reduce the embankment settlement and differential settlement. It can be concluded that, the design of cement-mixed piles can ensure the seismic performance of the subgrade,and satisfy the seismic design requirements of the YuxiMengzi railway in areas of VIII degrees seismic fortification intensity.展开更多
To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at differen...To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.展开更多
At pesent, it is very popular to estimate pile bearing capacity by use of empirical formula and physical indexes of soil provided in the design codes for civil construction in China. This paper attempts to apply mecha...At pesent, it is very popular to estimate pile bearing capacity by use of empirical formula and physical indexes of soil provided in the design codes for civil construction in China. This paper attempts to apply mechanical indexes of soil and semi-empirical formulas, which are based on soil mechanical theories and were summarized and presented by Meyerhof in 1976, to calculate the axial pile bearing capacity. Loading test results of 24 single piles in Tianjin area have been collected and compared with the proposed calulation approach.展开更多
基金Project supported by the China Postdoctoral Science Foundation (No. 2012M521339)the Independent Innovation Foundation of Shandong University (No. 2012GN012),China
文摘This work presents a new analytical method to analyze the influence of reaction piles on the test pile response in a static load test.In our method,the interactive effect between soil and pile is simulated using independent springs and the shear displacement method is adopted to analyze the influence of reaction piles on test pile response.Moreover,the influence of the sheltering effect between reaction piles and test pile on the test pile response is taken into account.Two cases are analyzed to verify the rationality and efficiency of the present method.This method can be easily extended to a nonlinear response of an influenced test pile embedded in a multilayered soil,and the validity is also demonstrated using centrifuge model tests and a computer program presented in the literature.The present analyses indicate that the proposed method will lead to an underestimation of the test pile settlement in a static load test if the influence of the presence of reaction piles on the test pile response is neglected.
基金National Natural Science Foundation of China under Grant Nos.51622803,51378177 and 51420105013the 111 Project under Grant No.B13024
文摘Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder.
文摘In this paper,the soil-pile system of O-cell test of pile is simplified as an axi-symmetric problem.By using aggregation of quadrilateral isoparametric elements to simulate pile and soil,setting Goodman's elements between pile and soils,a method of numerical simulation analysis on O-cell test of pile is presented with the consideration of nonlinear mechanical behavior of soils and pile-soil interface.The method is applied to the analysis of a case of O-cell test of pile.The load-displacement curves and axial force curves of upper pile and lower pile obtained from the O-cell test of pile are fitted,and parameters of the mechanical model of soils and interface are determined.Analysis results validate that the numerical simulation analysis method put forward in this paper is applicable.Furthermore,the interaction and influence of upper pile and lower pile in the O-cell test are also studied with the method.The result shows that if load box is located in a soil layer with fine mechanical behavior,the interaction of upper pile and lower pile in O-cell test can be ignored generally.
基金sponsored by the National Natural Science Foundation of China(51578467)
文摘Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks,the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed,and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake,with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface,while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure,local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside,and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs,the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated.
文摘This paper reports in situ tension test and laboratory model test for large diameter, manually digging anchorage piles in the 2nd Luzhou Changjiang Bridge. Tension behavior, uplift bearing capacity and influence of rock characteristics on bearing capacity are discussed. Proposes are presented with respect to issues related to the construction and design of uplift piles.
文摘The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defects of the pile is very important. As so far, there are some difficult problems in pile defect detection. Based on stress wave theory, some of these typical difficult problems were studied through model tests. The analyses of the test results are carried out and some significant results of the low-strain method are obtained, when a pile has a gradually-decreasing crosssection part, the amplitude of the reflective signal originating from the defect is dependent on the decreasing value of the rate of crosssection β. No apparent signal reflected from the necking appeares on the velocity response curve when the value of β is less than about 3. 5 %.
文摘In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d cone p e n e tra tio nte s t (CPT) resu lts w ere used as in p u t variables for pred ictio n o f pile bearin g capacity. The d ata u se d w erecollected from th e existing litera tu re an d consisted o f 50 case records. The application o f LSSVM w ascarried o u t by dividing th e d ata into th re e se ts: a train in g se t for learning th e pro b lem an d obtain in g arelationship b e tw e e n in p u t variables an d pile bearin g capacity, and testin g an d validation sets forevaluation o f th e predictive an d g en eralization ability o f th e o b tain ed relationship. The predictions o f pilebearing capacity by LSSVM w ere evaluated by com paring w ith ex p erim en tal d ata an d w ith th o se bytrad itio n al CPT-based m eth o d s and th e gene ex pression pro g ram m in g (GEP) m odel. It w as found th a t th eLSSVM perform s w ell w ith coefficient o f d eterm in atio n , m ean, an d sta n d ard dev iatio n equivalent to 0.99,1.03, an d 0.08, respectively, for th e testin g set, an d 1, 1.04, an d 0.11, respectively, for th e v alidation set. Thelow values o f th e calculated m ean squared e rro r an d m ean ab so lu te e rro r indicated th a t th e LSSVM w asaccurate in p redicting th e pile bearing capacity. The results o f com parison also show ed th a t th e p roposedalg o rith m p red icted th e pile bearin g capacity m ore accurately th a n th e trad itio n al m eth o d s including th eGEP m odel.
基金Major Research Plan of National Natural Science Foundation of China Under Grant No.90815009National Natural Science Foundation of China Under Grant No.50378031 and 50178027Western Transport Construction Technology Projects Under Grant No.2009318000100
文摘This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.
文摘Recently a research team at Ohio University,USA,conducted a unique full-scale feld load test to simulate the aeration pipe installations at a copper extraction mine operated in Chile.The overliner material taken from the mine was used in recreating the in situ conditions.Electric heaters were utilized to raise the temperature inside each pipe to simulate the essential element of the copper extraction process.The maximum vertical deflection reached by the test pipes was close to 20%,when the simulated heap pile height was 80 m.The plastic pipes and the overliner material were also tested in the laboratory.Based on the results,the maximum heap pile fll depth was recommended for the aeration system.The results indicated that the vertical deflection was the primary performance index for the aeration pipes installed in heap piles at mines.Lastly,the pipe made of polypropylene resin was super.
基金sponsored by the Railway's Research and Development Project of the Ministry of Railways of the People's Republic of the China:Study on Special Subgrade Construction Technology in High Intensity Earthquake Area of the Yuxi-Mengzi Railway
文摘Cement-mixed piles,as countermeasure against liquefaction of silt and sand ground,can improve the shear strength and bearing capacity of foundation soil,meaning cement-mixed piles are capable of resisting displacement when an earthquake happens. However,investigations of cement-mixed piles by experimental methods such as the shaking table test is few and far between. It is especially true for the seismic performance of cement-mixed piles in liquefiable railway foundations in high seismic intensity regions. To this end,a cross-section of the Yuxi-Mengzi railway was selected as the prototype and studied by the shaking table test in this study. The results showed that composite foundation of cementmixed piles was not liquefied when the seismic acceleration was lower than 0. 30g. In the process of acceleration increasing from 0. 30g at 2Hz to 0. 60g at 3Hz,the upper middle silt outside slope toe was partly liquefied. The foundation soil under the shoulders and center of subgrade was far from the initial liquefaction criterion during the test. Cementmixed piles can effectively reduce the embankment settlement and differential settlement. It can be concluded that, the design of cement-mixed piles can ensure the seismic performance of the subgrade,and satisfy the seismic design requirements of the YuxiMengzi railway in areas of VIII degrees seismic fortification intensity.
基金Key Subject for Science Research and De-velopment Plan of Railway Ministry (No.2006G004-B)
文摘To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.
文摘At pesent, it is very popular to estimate pile bearing capacity by use of empirical formula and physical indexes of soil provided in the design codes for civil construction in China. This paper attempts to apply mechanical indexes of soil and semi-empirical formulas, which are based on soil mechanical theories and were summarized and presented by Meyerhof in 1976, to calculate the axial pile bearing capacity. Loading test results of 24 single piles in Tianjin area have been collected and compared with the proposed calulation approach.