Generically, SCM may be said to include all activities carried out to ensure proper functioning of the supply chain. The activities included in proper management of a supply chain broadly include logistics activities,...Generically, SCM may be said to include all activities carried out to ensure proper functioning of the supply chain. The activities included in proper management of a supply chain broadly include logistics activities, planning and control of the flow of information and materials in a firm, management of relationships with other organizations and government intervention, However, crude oil theft and pipeline vandalism are established products supply chain disruptors in Nigeria which are rendering the task of running an efficient petroleum supply chain onerous. This paper aims to establish the importance of effective supply chain strategies for companies in the oil and gas industry with special focus on the Nigerian oil and gas sector and the strategies by which the state oil and gas corporation in this sector may mitigate disruptions to its supply chain. This study investigates the enhancement of supply chain strategies towards meeting the challenge of crude oil theft and pipeline vandalism, using the Nigerian National Corporation (NNPC) as a case study. Based on this study, data were collected from two sources: A summary of incident reports obtained from NNPC and an interview with personnel in the PPMC Department. Incident report refers to a report produced when accidents such as equipment failure, injury, loss of life, or fire occur at the work site. Content analysis is utilized to evaluate data obtained from interview responses, CBN financial stability reports, NDIC annual reports, circulars, banking supervision reports and implementation guidelines. The study found out that NNPC should endeavor to sustain its value chain and ward of pipeline vandals and crude oil thieves by engaging in community partnership, detailing security outfits to ensure its pipelines’ right of way and bridging. Concluded that the oil supply chain of the Nigerian National Petroleum Corporation has been plagued by disruptions in the form of crude oil theft and pipeline vandalism which has had debilitating effects on its value.展开更多
With the application of the advanced measurement infrastructure in power grids,data driven electricity theft detection methods become the primary stream for pinpointing electricity thieves.However,owing to anomaly sub...With the application of the advanced measurement infrastructure in power grids,data driven electricity theft detection methods become the primary stream for pinpointing electricity thieves.However,owing to anomaly submergence,which shows that the usage patterns of electricity thieves may not always deviate from those of normal users,the performance of the existing usage-pattern-based method could be affected.In addition,the detection results of some unsupervised learning algorithm models are abnormal degrees rather than“0-1”to ascertain whether electricity theft has occurred.The detection with fixed threshold value may lead to deviation and would not be sufficiently flexible to handle the detection for different scenes and users.To address these issues,this study proposes a new electricity theft detection method based on load shape dictionary of users.A corresponding strategy for tunable threshold is proposed to optimize the detection effect of electricity theft,and the efficacy and applicability of the proposed adaptive electricity theft detection method were verified from numerical experiments.展开更多
One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which make...One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which makes it possible for advanced data analysis that was not previously possible.For this purpose,we have taken historical data of energy thieves and normal users.To avoid imbalance observation,biased estimates,we applied the interpolation method.Furthermore,the data unbalancing issue is resolved in this paper by Nearmiss undersampling technique and makes the data suitable for further processing.By proposing an improved version of Zeiler and Fergus Net(ZFNet)as a feature extraction approach,we had able to reduce the model’s time complexity.To minimize the overfitting issues,increase the training accuracy and reduce the training loss,we have proposed an enhanced method by merging Adaptive Boosting(AdaBoost)classifier with Coronavirus Herd Immunity Optimizer(CHIO)and Forensic based Investigation Optimizer(FBIO).In terms of low computational complexity,minimized over-fitting problems on a large quantity of data,reduced training time and training loss and increased training accuracy,our model outperforms the benchmark scheme.Our proposed algorithms Ada-CHIO andAda-FBIO,have the low MeanAverage Percentage Error(MAPE)value of error,i.e.,6.8%and 9.5%,respectively.Furthermore,due to the stability of our model our proposed algorithms Ada-CHIO and Ada-FBIO have achieved the accuracy of 93%and 90%.Statistical analysis shows that the hypothesis we proved using statistics is authentic for the proposed technique against benchmark algorithms,which also depicts the superiority of our proposed techniques.展开更多
Electricity theft is one of the major issues in developing countries which is affecting their economy badly.Especially with the introduction of emerging technologies,this issue became more complicated.Though many new ...Electricity theft is one of the major issues in developing countries which is affecting their economy badly.Especially with the introduction of emerging technologies,this issue became more complicated.Though many new energy theft detection(ETD)techniques have been proposed by utilising different data mining(DM)techniques,state&network(S&N)based techniques,and game theory(GT)techniques.Here,a detailed survey is presented where many state-of-the-art ETD techniques are studied and analysed for their strengths and limitations.Three levels of taxonomy are presented to classify state-of-the-art ETD techniques.Different types and ways of energy theft and their consequences are studied and summarised and different parameters to benchmark the performance of proposed techniques are extracted from literature.The challenges of different ETD techniques and their mitigation are suggested for future work.It is observed that the literature on ETD lacks knowledge management techniques that can be more effective,not only for ETD but also for theft tracking.This can help in the prevention of energy theft,in the future,as well as for ETD.展开更多
Unauthorized use of energy is the major source of the non-technical losses of the energy in developing countries. Gas theft as a kind of energy theft is an increasing issue in a number of countries particularly in dev...Unauthorized use of energy is the major source of the non-technical losses of the energy in developing countries. Gas theft as a kind of energy theft is an increasing issue in a number of countries particularly in developing countries. This study is an attempt to address the issue of gas theft through the deployment of Geographic Information System (GIS) capabilities (Spatial Analysis) to import external factors into the current gas theft detection methods, improve data mining processes, and offer some management solutions. To achieve the intended goals in the study, two types of data sources were collected and analyzed: internal data such as reported instances of gas theft, and some customer properties, and external data such as some demographic data. In order to analyze and modeling the gas theft and the relationships between variables we used Hotspot analysis, Ordinary Least Squares regression (OLS) and Geographically Weighted Regression (GWR) analysis with ArcGIS tools. The results from clustering test indicated that the gas theft is not a random phenomenon in all areas of Tabriz and there are underlying factors. Mapping clusters by the hotspot techniques suggested the locations of clusters and areas at risk. The results of the regression analysis illustrated the importance of external factors clearly. According to the results, we recommend a conceptual GIS framework to select high risk areas as a subset data for a meter data analysis. Results of this research are of great importance for GIS based spatial analysis and can be used as base of future researches.展开更多
The article investigates the similarities and differences between all versions of Grand Theft Auto as an adventure game with the widest popularity in the last decade. The game is a story collection, a frame for perfor...The article investigates the similarities and differences between all versions of Grand Theft Auto as an adventure game with the widest popularity in the last decade. The game is a story collection, a frame for performance, a virtual museum of vernacular culture and a widely circulated pop culture artifact whose double-voiced aesthetic has given rise to diverse interpretive communities. The aim of comparing the differences and similarities between different versions of the game is to be able to evaluate the game from the user’s point of view. With this aim, whether with the verisimilitude that the different versions offer makes GTA a product of an iterative design process or not will be displayed.展开更多
In the field of vision of American Literature in the 20th century,Katherine Anne Porter is highly praised by many readers for her flexible artistic style,accurate and vivid description of characters,profound connotati...In the field of vision of American Literature in the 20th century,Katherine Anne Porter is highly praised by many readers for her flexible artistic style,accurate and vivid description of characters,profound connotation of her works.As a female writer,Porter is good at creating female characters from a unique female perspective,and reveals the inner activities of female characters in self-development and the female individual consciousness and independent consciousness pursued by women through her works.Although she doesn’t consciously involve feminism,we can see that the heroine’s female consciousness is gradually awakening from her portrayal of female characters and her exploration of female inner world.This paper takes Porter’s short story Theft published in the 1990s as an example to analyze the feminist consciousness in her works from the perspective of feminism.展开更多
This paper aims at analyzing the impact of the neutral conductor absence at specific sections over the performance of the power distribution lines, and proposing alternative solutions to mitigate the problems caused b...This paper aims at analyzing the impact of the neutral conductor absence at specific sections over the performance of the power distribution lines, and proposing alternative solutions to mitigate the problems caused by the neutral conductor theft. Simulations are made by the software lnterplan and show that the absence of neutral conductor at specific sections of power distribution lines may increase the neutral-to-ground voltages, which compromises the system's safety. The solution developed keeps the technical performance of the power distribution system at satisfactory levels, regarding the voltage profile, or, at least, close to the level before the neutral conductor's theft.展开更多
With the development of advanced metering infrastructure(AMI),large amounts of electricity consumption data can be collected for electricity theft detection.However,the imbalance of electricity consumption data is vio...With the development of advanced metering infrastructure(AMI),large amounts of electricity consumption data can be collected for electricity theft detection.However,the imbalance of electricity consumption data is violent,which makes the training of detection model challenging.In this case,this paper proposes an electricity theft detection method based on ensemble learning and prototype learning,which has great performance on imbalanced dataset and abnormal data with different abnormal level.In this paper,convolutional neural network(CNN)and long short-term memory(LSTM)are employed to obtain abstract feature from electricity consumption data.After calculating the means of the abstract feature,the prototype per class is obtained,which is used to predict the labels of unknown samples.In the meanwhile,through training the network by different balanced subsets of training set,the prototype is representative.Compared with some mainstream methods including CNN,random forest(RF)and so on,the proposed method has been proved to effectively deal with the electricity theft detection when abnormal data only account for 2.5%and 1.25%of normal data.The results show that the proposed method outperforms other state-of-the-art methods.展开更多
With the proliferation of smart grid research, the Advanced Metering Infrastructure (AMI) has become the first ubiquitous and fixed computing platform. However, due to the unique characteristics of AMI, such as comp...With the proliferation of smart grid research, the Advanced Metering Infrastructure (AMI) has become the first ubiquitous and fixed computing platform. However, due to the unique characteristics of AMI, such as complex network structure, resource-constrained smart meter, and privacy-sensitive data, it is an especially challenging issue to make AMI secure. Energy theft is one of the most important concerns related to the smart grid implementation. It is estimated that utility companies lose more than S25 billion every year due to energy theft around the world. To address this challenge, in this paper, we discuss the background of AMI and identify major security requirements that AMI should meet. Specifically, an attack tree based threat model is first presented to illustrate the energy-theft behaviors in AMI. Then, we summarize the current AMI energy-theft detection schemes into three categories, i.e., classification-based, state estimation-based, and game theory-based ones, and make extensive comparisons and discussions on them. In order to provide a deep understanding of security vulnerabilities and solutions in AMI and shed light on future research directions, we also explore some open challenges and potential solutions for energy-theft detection.展开更多
Virtual property has attained legal status with the recent conviction of several online thieves, but the issue remains a murky one Zhang Bin, a resident of Ningbo, in Zhejiang Province, began selling online game accou...Virtual property has attained legal status with the recent conviction of several online thieves, but the issue remains a murky one Zhang Bin, a resident of Ningbo, in Zhejiang Province, began selling online game accounts on the Internet in February 2005. Among his customers was a man surnamed Shen, who bought an account for 4,800 yuan. Several days later, Shen discovered that his account had been embezzled, and展开更多
窃电行为不仅会扰乱正常用电秩序,更会影响电网的供电质量和安全运行。针对窃电检测工作中所面临的用户正常用电行为与窃电行为多样化问题,该文提出一种基于多阶段递推数据分析的低压台区窃电检测方法。该方法第1阶段对嫌疑窃电台区进...窃电行为不仅会扰乱正常用电秩序,更会影响电网的供电质量和安全运行。针对窃电检测工作中所面临的用户正常用电行为与窃电行为多样化问题,该文提出一种基于多阶段递推数据分析的低压台区窃电检测方法。该方法第1阶段对嫌疑窃电台区进行判定,针对当日线损不是明显激增的情况,提出基于台区线损综合波动率、总分表电流差异率、线损和电流曲线的突变点时间重合度的三步分析法,为窃电嫌疑用户的检测提供了良好的条件;第2阶段提出基于最优特征集的时间序列相似性度量方法,基于欧氏距离度量曲线间数值特征,同时基于动态时间规整(dynamic time warping,DTW)算法度量曲线间的形态特征,实现窃电嫌疑用户的初步筛选;第3阶段提出基于核函数和惩罚参数优化的支持向量机二次深度检测模型(optimize kernel-function and penalty-parameters support vector machine,OKPSVM),其中惩罚参数采用综合改进的粒子群(improved particle swarm optimization,IPSO)算法。通过算例仿真和实际工程应用,整体优化后的支持向量机模型(IPSO-OKPSVM)能够提高深度窃电检测的精准性和适用性。展开更多
Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the hig...Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%.展开更多
文摘Generically, SCM may be said to include all activities carried out to ensure proper functioning of the supply chain. The activities included in proper management of a supply chain broadly include logistics activities, planning and control of the flow of information and materials in a firm, management of relationships with other organizations and government intervention, However, crude oil theft and pipeline vandalism are established products supply chain disruptors in Nigeria which are rendering the task of running an efficient petroleum supply chain onerous. This paper aims to establish the importance of effective supply chain strategies for companies in the oil and gas industry with special focus on the Nigerian oil and gas sector and the strategies by which the state oil and gas corporation in this sector may mitigate disruptions to its supply chain. This study investigates the enhancement of supply chain strategies towards meeting the challenge of crude oil theft and pipeline vandalism, using the Nigerian National Corporation (NNPC) as a case study. Based on this study, data were collected from two sources: A summary of incident reports obtained from NNPC and an interview with personnel in the PPMC Department. Incident report refers to a report produced when accidents such as equipment failure, injury, loss of life, or fire occur at the work site. Content analysis is utilized to evaluate data obtained from interview responses, CBN financial stability reports, NDIC annual reports, circulars, banking supervision reports and implementation guidelines. The study found out that NNPC should endeavor to sustain its value chain and ward of pipeline vandals and crude oil thieves by engaging in community partnership, detailing security outfits to ensure its pipelines’ right of way and bridging. Concluded that the oil supply chain of the Nigerian National Petroleum Corporation has been plagued by disruptions in the form of crude oil theft and pipeline vandalism which has had debilitating effects on its value.
基金supported by the National Natural Science Foundation of China(U1766210).
文摘With the application of the advanced measurement infrastructure in power grids,data driven electricity theft detection methods become the primary stream for pinpointing electricity thieves.However,owing to anomaly submergence,which shows that the usage patterns of electricity thieves may not always deviate from those of normal users,the performance of the existing usage-pattern-based method could be affected.In addition,the detection results of some unsupervised learning algorithm models are abnormal degrees rather than“0-1”to ascertain whether electricity theft has occurred.The detection with fixed threshold value may lead to deviation and would not be sufficiently flexible to handle the detection for different scenes and users.To address these issues,this study proposes a new electricity theft detection method based on load shape dictionary of users.A corresponding strategy for tunable threshold is proposed to optimize the detection effect of electricity theft,and the efficacy and applicability of the proposed adaptive electricity theft detection method were verified from numerical experiments.
文摘One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which makes it possible for advanced data analysis that was not previously possible.For this purpose,we have taken historical data of energy thieves and normal users.To avoid imbalance observation,biased estimates,we applied the interpolation method.Furthermore,the data unbalancing issue is resolved in this paper by Nearmiss undersampling technique and makes the data suitable for further processing.By proposing an improved version of Zeiler and Fergus Net(ZFNet)as a feature extraction approach,we had able to reduce the model’s time complexity.To minimize the overfitting issues,increase the training accuracy and reduce the training loss,we have proposed an enhanced method by merging Adaptive Boosting(AdaBoost)classifier with Coronavirus Herd Immunity Optimizer(CHIO)and Forensic based Investigation Optimizer(FBIO).In terms of low computational complexity,minimized over-fitting problems on a large quantity of data,reduced training time and training loss and increased training accuracy,our model outperforms the benchmark scheme.Our proposed algorithms Ada-CHIO andAda-FBIO,have the low MeanAverage Percentage Error(MAPE)value of error,i.e.,6.8%and 9.5%,respectively.Furthermore,due to the stability of our model our proposed algorithms Ada-CHIO and Ada-FBIO have achieved the accuracy of 93%and 90%.Statistical analysis shows that the hypothesis we proved using statistics is authentic for the proposed technique against benchmark algorithms,which also depicts the superiority of our proposed techniques.
基金supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sk?odowska-Curie Grant Agreement(801522)Science Foundation Ireland and co-funded by the European Regional Development Fund through the ADAPT Centre for Digital Content Technology(13/RC/2106_P2)。
文摘Electricity theft is one of the major issues in developing countries which is affecting their economy badly.Especially with the introduction of emerging technologies,this issue became more complicated.Though many new energy theft detection(ETD)techniques have been proposed by utilising different data mining(DM)techniques,state&network(S&N)based techniques,and game theory(GT)techniques.Here,a detailed survey is presented where many state-of-the-art ETD techniques are studied and analysed for their strengths and limitations.Three levels of taxonomy are presented to classify state-of-the-art ETD techniques.Different types and ways of energy theft and their consequences are studied and summarised and different parameters to benchmark the performance of proposed techniques are extracted from literature.The challenges of different ETD techniques and their mitigation are suggested for future work.It is observed that the literature on ETD lacks knowledge management techniques that can be more effective,not only for ETD but also for theft tracking.This can help in the prevention of energy theft,in the future,as well as for ETD.
文摘Unauthorized use of energy is the major source of the non-technical losses of the energy in developing countries. Gas theft as a kind of energy theft is an increasing issue in a number of countries particularly in developing countries. This study is an attempt to address the issue of gas theft through the deployment of Geographic Information System (GIS) capabilities (Spatial Analysis) to import external factors into the current gas theft detection methods, improve data mining processes, and offer some management solutions. To achieve the intended goals in the study, two types of data sources were collected and analyzed: internal data such as reported instances of gas theft, and some customer properties, and external data such as some demographic data. In order to analyze and modeling the gas theft and the relationships between variables we used Hotspot analysis, Ordinary Least Squares regression (OLS) and Geographically Weighted Regression (GWR) analysis with ArcGIS tools. The results from clustering test indicated that the gas theft is not a random phenomenon in all areas of Tabriz and there are underlying factors. Mapping clusters by the hotspot techniques suggested the locations of clusters and areas at risk. The results of the regression analysis illustrated the importance of external factors clearly. According to the results, we recommend a conceptual GIS framework to select high risk areas as a subset data for a meter data analysis. Results of this research are of great importance for GIS based spatial analysis and can be used as base of future researches.
文摘The article investigates the similarities and differences between all versions of Grand Theft Auto as an adventure game with the widest popularity in the last decade. The game is a story collection, a frame for performance, a virtual museum of vernacular culture and a widely circulated pop culture artifact whose double-voiced aesthetic has given rise to diverse interpretive communities. The aim of comparing the differences and similarities between different versions of the game is to be able to evaluate the game from the user’s point of view. With this aim, whether with the verisimilitude that the different versions offer makes GTA a product of an iterative design process or not will be displayed.
文摘In the field of vision of American Literature in the 20th century,Katherine Anne Porter is highly praised by many readers for her flexible artistic style,accurate and vivid description of characters,profound connotation of her works.As a female writer,Porter is good at creating female characters from a unique female perspective,and reveals the inner activities of female characters in self-development and the female individual consciousness and independent consciousness pursued by women through her works.Although she doesn’t consciously involve feminism,we can see that the heroine’s female consciousness is gradually awakening from her portrayal of female characters and her exploration of female inner world.This paper takes Porter’s short story Theft published in the 1990s as an example to analyze the feminist consciousness in her works from the perspective of feminism.
文摘This paper aims at analyzing the impact of the neutral conductor absence at specific sections over the performance of the power distribution lines, and proposing alternative solutions to mitigate the problems caused by the neutral conductor theft. Simulations are made by the software lnterplan and show that the absence of neutral conductor at specific sections of power distribution lines may increase the neutral-to-ground voltages, which compromises the system's safety. The solution developed keeps the technical performance of the power distribution system at satisfactory levels, regarding the voltage profile, or, at least, close to the level before the neutral conductor's theft.
基金supported by National Natural Science Foundation of China(No.52277083).
文摘With the development of advanced metering infrastructure(AMI),large amounts of electricity consumption data can be collected for electricity theft detection.However,the imbalance of electricity consumption data is violent,which makes the training of detection model challenging.In this case,this paper proposes an electricity theft detection method based on ensemble learning and prototype learning,which has great performance on imbalanced dataset and abnormal data with different abnormal level.In this paper,convolutional neural network(CNN)and long short-term memory(LSTM)are employed to obtain abstract feature from electricity consumption data.After calculating the means of the abstract feature,the prototype per class is obtained,which is used to predict the labels of unknown samples.In the meanwhile,through training the network by different balanced subsets of training set,the prototype is representative.Compared with some mainstream methods including CNN,random forest(RF)and so on,the proposed method has been proved to effectively deal with the electricity theft detection when abnormal data only account for 2.5%and 1.25%of normal data.The results show that the proposed method outperforms other state-of-the-art methods.
基金supported by China Scholarship Councilthe National Natural Science Foundation of China (Nos. 61170261 and 61202369)NSERC,Canada
文摘With the proliferation of smart grid research, the Advanced Metering Infrastructure (AMI) has become the first ubiquitous and fixed computing platform. However, due to the unique characteristics of AMI, such as complex network structure, resource-constrained smart meter, and privacy-sensitive data, it is an especially challenging issue to make AMI secure. Energy theft is one of the most important concerns related to the smart grid implementation. It is estimated that utility companies lose more than S25 billion every year due to energy theft around the world. To address this challenge, in this paper, we discuss the background of AMI and identify major security requirements that AMI should meet. Specifically, an attack tree based threat model is first presented to illustrate the energy-theft behaviors in AMI. Then, we summarize the current AMI energy-theft detection schemes into three categories, i.e., classification-based, state estimation-based, and game theory-based ones, and make extensive comparisons and discussions on them. In order to provide a deep understanding of security vulnerabilities and solutions in AMI and shed light on future research directions, we also explore some open challenges and potential solutions for energy-theft detection.
文摘Virtual property has attained legal status with the recent conviction of several online thieves, but the issue remains a murky one Zhang Bin, a resident of Ningbo, in Zhejiang Province, began selling online game accounts on the Internet in February 2005. Among his customers was a man surnamed Shen, who bought an account for 4,800 yuan. Several days later, Shen discovered that his account had been embezzled, and
文摘窃电行为不仅会扰乱正常用电秩序,更会影响电网的供电质量和安全运行。针对窃电检测工作中所面临的用户正常用电行为与窃电行为多样化问题,该文提出一种基于多阶段递推数据分析的低压台区窃电检测方法。该方法第1阶段对嫌疑窃电台区进行判定,针对当日线损不是明显激增的情况,提出基于台区线损综合波动率、总分表电流差异率、线损和电流曲线的突变点时间重合度的三步分析法,为窃电嫌疑用户的检测提供了良好的条件;第2阶段提出基于最优特征集的时间序列相似性度量方法,基于欧氏距离度量曲线间数值特征,同时基于动态时间规整(dynamic time warping,DTW)算法度量曲线间的形态特征,实现窃电嫌疑用户的初步筛选;第3阶段提出基于核函数和惩罚参数优化的支持向量机二次深度检测模型(optimize kernel-function and penalty-parameters support vector machine,OKPSVM),其中惩罚参数采用综合改进的粒子群(improved particle swarm optimization,IPSO)算法。通过算例仿真和实际工程应用,整体优化后的支持向量机模型(IPSO-OKPSVM)能够提高深度窃电检测的精准性和适用性。
基金a grant from the Center of Excellence in Information Assurance(CoEIA),KSU.
文摘Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%.