Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te...Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.展开更多
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here...The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.展开更多
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o...Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.展开更多
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon...The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.展开更多
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential...Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals.展开更多
Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To c...Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To conquer this goal,herein,two-dimensional MoS_(2) nanosheets are grown in situ on the surface of one-dimensional CNTs to prepare core-sheath MoS_(2)@CNTs for the encapsulation of paraffin wax(PW).Benefiting from the synergistic enhancement photothermal effect of MoS_(2) and CNTs,MoS_(2)@CNTs is capable of efficiently trapping photons and quickly transporting phonons,thus yielding a high solar-thermal energy conversion and storage efficiency of 94.97%.Meanwhile,PW/MoS_(2)@CNTs composite PCMs exhibit a high phase change enthalpy of 101.60 J/g and excellent lo ng-term thermal storage durability after undergoing multiple heating-cooling cycles.More attractively,PW/MoS_(2)@CNTs composite PCMs realize thermal management functional microwave absorption in heat-related electronic application scenarios,which is superior to the single microwave absorption of traditional materials.The minimum reflection loss(RL) for PW/MoS_(2)@CNTs is-28 dB at 12.91 GHz with a 2.0 mm thickness.This functional integration design provides some insightful references on developing advanced microwave absorbing composite PCMs,holding great potential towards high-efficiency solar energy utilization and thermally managed microwave absorption fields.展开更多
Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatme...Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatment were innovatively used for the modification of sepiolite. The modified sepiolite(ST_(m)) obtained in different hydrochloric acid concentrations(0.25, 0.5, 0.75, and 1.0 mol·L^(-1)) was added to stearic acid(SA) via vacuum impregnation method. The thermophysical properties of the composites were changed by varying the hydrochloric acid concentration. The SA-ST_(m0.5)obtained by microwave acid treatment at 0.5 mol·L^(-1)hydrochloric acid concentration showed a higher loading capacity(82.63%) than other composites according to the differential scanning calorimeter(DSC) analysis. The melting and freezing enthalpies of SA-ST_(m0.5)were of 152.30 and 148.90 J·g^(-1), respectively. The thermal conductivity of SA-ST_(m0.5)was as high as 1.52 times that of pure SA. In addition, the crystal structure, surface morphology, and microporous structure of ST_(m)were studied, and the mechanism of SAST_(m0.5)performance enhancement was further revealed by Brunauere Emmett Teller(BET) analysis. Leakage experiment showed that SAST_(m0.5)had a good morphological stability. These results demostrate that SA-ST_(m0.5)has a potential application in thermal energy storage.展开更多
Thermal energy,i.e.,the electromagnetic energy in the infrared range that originates from the direct solar radiation,outgoing terrestrial radiation,waste heat from combustion of fuels,heat-emitting electrical devices,...Thermal energy,i.e.,the electromagnetic energy in the infrared range that originates from the direct solar radiation,outgoing terrestrial radiation,waste heat from combustion of fuels,heat-emitting electrical devices,decay of radioactive isotopes,organic putrefaction and fermentation,human body heat,and so on,constitutes a huge energy flux circulating on the earth surface.However,most energy converters designed for the conversion of electromagnetic energy into electricity,such as photovoltaic cells,are mainly focused on using a narrow part of the solar energy lying in the visible spectrum,while thermomechanical engines that are fueled by heat in the broad energy range and then convert it into mechanical work or store it as mechanical deformation,are paid less attention.Although the efficiency of thermomechanical devices is relatively low,they can be applied to collect waste heat which otherwise contributes to negative climate changes.In this review,operational principles of thermomechanical energy converters and a description of basic devices and materials that utilize thermal energy are given.In addition to conventional macroscopic engines,based on thermoacoustic,thermomagnetic,thermoelastic,hydride heat converters,and shape memory alloys,the emergent devices are described which are classified as smart actuators,breathing frameworks,thermoacoustic micro-transducers,nanomechanical resonators,plasmomechanical systems,and optothermal walkers.The performance of the different types of thermomechanical energy converters is described and compared.展开更多
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten...Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.展开更多
Thermal Energy Storage is becoming a necessary component of sustainable energy production systems as it helps alleviate intrinsic limitations of Renewable Energy Sources, such as intermittent use and mismatch between ...Thermal Energy Storage is becoming a necessary component of sustainable energy production systems as it helps alleviate intrinsic limitations of Renewable Energy Sources, such as intermittent use and mismatch between power demand and supply. This paper discusses a packed bed thermocline tank as a thermal energy storage solution. Firstly, this paper presents the development of a numerical model calculating heat transfers within the tank, based on a discretization over several nodes and the nodal formulation of the heat balance equation. The model considers a filler material and a heat transferring fluid and uses the finite difference method to calculate the temperature evolution of the two media across the tank. The model was validated with two different packed bed systems from the literature during a discharging process, presenting a good fit with the experimental results. Secondly, the experimental packed bed is presented and characterized for a charging cycle from ambient temperature to approximately 180?C. The charging experiment was accurately reproduced with the numerical model requiring minimal computational time. Two additional charging modes were simulated with different inlet HTF conditions: constant temperature and varying temperature following the profile produced by a thermal solar collector field. The temperature profiles obtained from the three charging modes were analysed and compared to each other. The proposed numerical and experimental tools will be used in future studies for a better understanding of the design and operating conditions of packed bed thermal energy storage systems.展开更多
The German Aerospace Center has merged a wide range of technological research and development for future cars in a project called "Next Generation Car". Within this large research project, three vehicle concepts for...The German Aerospace Center has merged a wide range of technological research and development for future cars in a project called "Next Generation Car". Within this large research project, three vehicle concepts for different applications (urban, regional and interurban) and with different powertrains (fuel-cell, battery and hybrid) will be developed. Research questions on different levels from conceptual question about vehicle modularity down to detailed technological aspects like combining hydrogen storage with cabin climatization and a systematic investigation of different thermal energy storage systems for electric vehicles concepts are covered by this project. To the latter, the contribution shows an overview about three thermal storage technologies--sensible solid media, metallic latent and thermochemical thermal energy storage systems--and details about the development of an electrically heated (power-to-heat) solid media storage system to achieve high storage densities and to allow flexible thermal discharging values. Central works target the identification of suitable thermal management solutions in future electric vehicle concepts to increase range, efficiency and flexibility.展开更多
This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) ...This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.展开更多
Mica was used as a supporting matrix for composite phase change materials(PCMs)in this work because of its distinctive morphology and structure.Composite PCMs were prepared using the vacuum impregnation method,in whic...Mica was used as a supporting matrix for composite phase change materials(PCMs)in this work because of its distinctive morphology and structure.Composite PCMs were prepared using the vacuum impregnation method,in which mica served as the supporting material and polyethylene glycol(PEG)served as the PCM.Fourier transform infrared and X-ray diffraction analysis confirmed that the addition of PEG had no effect on the crystal structure of mica.Moreover,no chemical reaction occurred between PEG and mica during the vacuum impregnation process,and no new substance was formed.The maximum load of mica-stabilized PEG was 46.24%,the phase change temperature of M_(400)/PEG was 46.03℃,and the latent heat values of melting and cooling were 77.75 and 77.73 J·g^(−1),respectively.The thermal conductivity of M_(400)/PEG was 2.4 times that of pure PEG.The thermal infrared images indicated that the thermal response of M_(400)/PEG improved relative to that of pure PEG.The leakage test confirmed that mica could stabilize PEG and that M_(400)/PEG had great form-stabilized property.These results demonstrate that M_(400)/PEG has potential in the field of building energy conservation.展开更多
To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) metho...To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) method based on thermal energy storage to eliminate frost off the outdoor coil surface was developed. Comparative experiments using both the stand reverse cycle defrosting (SRCD) method and the NRCD method were carried out on an experimental ASHP unit with a nominal 2.5 kW heating capacity. The results indicate that during defrosting operation, using the NRCD method improves discharge and suction pressures by 0.24 MPa and 0.19 MPa, respectively, shortens defrosting duration by 60%, and reduces the defrosting energy consumption by 48.1% in the experimental environment, compared with those by the use of SRCD method. Therefore, using the NRCD method can shorten the defrosting duration, improve the indoor thermal comfort, and reduce the defrosting energy consumption in defrosting.展开更多
Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhous...Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.展开更多
The phase change characteristic of the power source of an underwater glider propelled by the ocean's thermal energy is the key factor in glider attitude control. A numerical model has been established based on the en...The phase change characteristic of the power source of an underwater glider propelled by the ocean's thermal energy is the key factor in glider attitude control. A numerical model has been established based on the enthalpy method to analyze the phase change heat transfer process under convective boundary conditions. Phase change is not an isothermal process, but one that occurs at a range of temperature. The total melting time of the material is very sensitive to the surrounding temperature. When the temperature of the surroundings decreases 8 degrees, the total melting time increases 1.8 times. But variations in surrounding temperature have little effect on the initial temperature of phase change, and the slope of the temperature time history curve remains the same. However, the temperature at which phase change is completed decreases significantly. Our research shows that the phase change process is also affected by container size, boundary conditions, and the power source's cross sectional area. Materials stored in 3 cylindrical containers with a diameter of 38ram needed the shortest phase change time. Our conclusions should be helpful in effective design of underwater glider power systems.展开更多
The selection of phase change material(PCM)plays an important role in developing high-efficient thermal energy storage(TES)processes.Ionic liquids(ILs)or organic salts are thermally stable,non-volatile,and non-flammab...The selection of phase change material(PCM)plays an important role in developing high-efficient thermal energy storage(TES)processes.Ionic liquids(ILs)or organic salts are thermally stable,non-volatile,and non-flammable.Importantly,researchers have proved that some ILs possess higher latent heat of fusion than conventional PCMs.Despite these attractive characteristics,yet surprisingly,little research has been performed to the systematic selection or structural design of ILs for TES.Besides,most of the existing work is only focused on the latent heat when selecting PCMs.However,one should note that other properties such as heat capacity and thermal conductivity could affect the TES performance as well.In this work,we propose a computer-aided molecular design(CAMD)based method to systematically design IL PCMs for a practical TES process.The effects of different IL properties are simultaneously captured in the IL property models and TES process models.Optimal ILs holding a best compromise of all the properties are identified through the solution of a formulated CAMD problem where the TES performance of the process is maximized.[MPyEtOH][TfO]is found to be the best material and excitingly,the identified top nine ILs all show a higher TES performance than the traditional PCM paraffin wax at 10 h thermal charging time.展开更多
Palygorskite/paraffin phase-change composites were prepared by the combination of purified palygorskite clay and sliced paraffin. Then, this composite was used in the Trombe wall to improve its energy storage ability....Palygorskite/paraffin phase-change composites were prepared by the combination of purified palygorskite clay and sliced paraffin. Then, this composite was used in the Trombe wall to improve its energy storage ability. Further, its energy storage ability was compared to that of ordinary concrete wall through contrastive test. The experiments show that palygorskite clay is a type of clay mineral with strong adsorption ability, and the purity of natural palygorskite clay can reach up to 97.1% after certain purification processes. Paraffin is well adsorbed by palygorskite, and the test results show that the optimal adsorption ratio is palygorskite: paraffin = 2:1(mass ratio). Palygorskite/paraffin phase change composites can be obtained by using palygorskite as the adsorbing medium to adsorb paraffin. The composite materials exhibit good heat storage(release) performance, which can store heat with increasing environment temperature and release heat with decreasing temperature. This property not only increases the inertia to environment temperature change, but also promotes the energy migration in different time and space, thus achieving a certain energy-saving effect. The application of palygorskite/paraffin phase change composite materials to the Trombe wall can significantly reduce the fluctuation of indoor temperature and enhance the thermal inertia of indoor environment. From the aspect of energy storage effect, the Trombe wall fabricated using PCMs is significantly superior to the concrete wall with the same thickness.展开更多
Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal ...Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal energy.展开更多
Phase change materials are one of the potential resources to replace fossil fuels in regards of supplying the energy of buildings.Basically,these materials absorb or release heat energy with the help of their latent h...Phase change materials are one of the potential resources to replace fossil fuels in regards of supplying the energy of buildings.Basically,these materials absorb or release heat energy with the help of their latent heat.Phase change materials have low thermal conductivity and this makes it possible to use the physical properties of these materials in the tropical regions where the solar radiation is more direct and concentrated over a smaller area.In this theoretical work,an attempt has been made to study the melting process of these materials by applying constant heat flux and temperature.It was found that by increasing the thickness of phase change materials’layers,due to the melting,more thermal energy is stored.Simultaneously it reduces the penetration of excessive heat into the chamber,so that by increasing the thickness of paraffin materials up to 20 mm,the rate of temperature reduction reaches more than 18%.It was also recognized that increasing the values of constant input heat flux increases buoyancy effects.Increasing the Stefan number from 0.1 to 0.3,increases the temperature by 6%.展开更多
基金supported by the National Nature Science Foundation of China under grant No.42272350the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources under grant No.SX202202.
文摘Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.
基金the National Natural Science Foundation of China[grant numbers 52203038,52173036 and 52073107]the National Key Technology R&D Program of China[grant number 2022YFC3901904,2022YFC3901903,and 2020YFB1709301]the Central University Basic Research Fund of China[grant number 2021XXJS035].
文摘The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.
基金sponsored by the National Key Research and Development Program of China(Grant No.2020YFC1808102).
文摘Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.
基金supported by the National Natural Science Foundation of China(No.52104265)。
文摘The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.
基金financially supported by the National Natural Science Foundation of China, China (Nos. 52274252 and 51874047)the Special Fund for the Construction of Innovative Provinces in Hunan Province, China (No. 2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007)。
文摘Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals.
基金supported by the National Natural Science Foundation of China (51902025)China Postdoctoral Science Foundation (2020T130060 and 2019M660520)。
文摘Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To conquer this goal,herein,two-dimensional MoS_(2) nanosheets are grown in situ on the surface of one-dimensional CNTs to prepare core-sheath MoS_(2)@CNTs for the encapsulation of paraffin wax(PW).Benefiting from the synergistic enhancement photothermal effect of MoS_(2) and CNTs,MoS_(2)@CNTs is capable of efficiently trapping photons and quickly transporting phonons,thus yielding a high solar-thermal energy conversion and storage efficiency of 94.97%.Meanwhile,PW/MoS_(2)@CNTs composite PCMs exhibit a high phase change enthalpy of 101.60 J/g and excellent lo ng-term thermal storage durability after undergoing multiple heating-cooling cycles.More attractively,PW/MoS_(2)@CNTs composite PCMs realize thermal management functional microwave absorption in heat-related electronic application scenarios,which is superior to the single microwave absorption of traditional materials.The minimum reflection loss(RL) for PW/MoS_(2)@CNTs is-28 dB at 12.91 GHz with a 2.0 mm thickness.This functional integration design provides some insightful references on developing advanced microwave absorbing composite PCMs,holding great potential towards high-efficiency solar energy utilization and thermally managed microwave absorption fields.
基金financially supported by the National Natural Science Foundation of China (No.52274252)the Special Fund for the Construction of Innovative Provinces in Hunan Province,China (Nos.2020RC3038 and 2022WK4004)the Changsha City Fund for Distinguished and Innovative Young Scholars,China (No.kq1802007)。
文摘Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatment were innovatively used for the modification of sepiolite. The modified sepiolite(ST_(m)) obtained in different hydrochloric acid concentrations(0.25, 0.5, 0.75, and 1.0 mol·L^(-1)) was added to stearic acid(SA) via vacuum impregnation method. The thermophysical properties of the composites were changed by varying the hydrochloric acid concentration. The SA-ST_(m0.5)obtained by microwave acid treatment at 0.5 mol·L^(-1)hydrochloric acid concentration showed a higher loading capacity(82.63%) than other composites according to the differential scanning calorimeter(DSC) analysis. The melting and freezing enthalpies of SA-ST_(m0.5)were of 152.30 and 148.90 J·g^(-1), respectively. The thermal conductivity of SA-ST_(m0.5)was as high as 1.52 times that of pure SA. In addition, the crystal structure, surface morphology, and microporous structure of ST_(m)were studied, and the mechanism of SAST_(m0.5)performance enhancement was further revealed by Brunauere Emmett Teller(BET) analysis. Leakage experiment showed that SAST_(m0.5)had a good morphological stability. These results demostrate that SA-ST_(m0.5)has a potential application in thermal energy storage.
基金grateful to the Ministry of Education and Sciences of Ukraine(https://mon.gov.ua)for continuing support(Project#М/66-2022).
文摘Thermal energy,i.e.,the electromagnetic energy in the infrared range that originates from the direct solar radiation,outgoing terrestrial radiation,waste heat from combustion of fuels,heat-emitting electrical devices,decay of radioactive isotopes,organic putrefaction and fermentation,human body heat,and so on,constitutes a huge energy flux circulating on the earth surface.However,most energy converters designed for the conversion of electromagnetic energy into electricity,such as photovoltaic cells,are mainly focused on using a narrow part of the solar energy lying in the visible spectrum,while thermomechanical engines that are fueled by heat in the broad energy range and then convert it into mechanical work or store it as mechanical deformation,are paid less attention.Although the efficiency of thermomechanical devices is relatively low,they can be applied to collect waste heat which otherwise contributes to negative climate changes.In this review,operational principles of thermomechanical energy converters and a description of basic devices and materials that utilize thermal energy are given.In addition to conventional macroscopic engines,based on thermoacoustic,thermomagnetic,thermoelastic,hydride heat converters,and shape memory alloys,the emergent devices are described which are classified as smart actuators,breathing frameworks,thermoacoustic micro-transducers,nanomechanical resonators,plasmomechanical systems,and optothermal walkers.The performance of the different types of thermomechanical energy converters is described and compared.
文摘Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.
文摘Thermal Energy Storage is becoming a necessary component of sustainable energy production systems as it helps alleviate intrinsic limitations of Renewable Energy Sources, such as intermittent use and mismatch between power demand and supply. This paper discusses a packed bed thermocline tank as a thermal energy storage solution. Firstly, this paper presents the development of a numerical model calculating heat transfers within the tank, based on a discretization over several nodes and the nodal formulation of the heat balance equation. The model considers a filler material and a heat transferring fluid and uses the finite difference method to calculate the temperature evolution of the two media across the tank. The model was validated with two different packed bed systems from the literature during a discharging process, presenting a good fit with the experimental results. Secondly, the experimental packed bed is presented and characterized for a charging cycle from ambient temperature to approximately 180?C. The charging experiment was accurately reproduced with the numerical model requiring minimal computational time. Two additional charging modes were simulated with different inlet HTF conditions: constant temperature and varying temperature following the profile produced by a thermal solar collector field. The temperature profiles obtained from the three charging modes were analysed and compared to each other. The proposed numerical and experimental tools will be used in future studies for a better understanding of the design and operating conditions of packed bed thermal energy storage systems.
文摘The German Aerospace Center has merged a wide range of technological research and development for future cars in a project called "Next Generation Car". Within this large research project, three vehicle concepts for different applications (urban, regional and interurban) and with different powertrains (fuel-cell, battery and hybrid) will be developed. Research questions on different levels from conceptual question about vehicle modularity down to detailed technological aspects like combining hydrogen storage with cabin climatization and a systematic investigation of different thermal energy storage systems for electric vehicles concepts are covered by this project. To the latter, the contribution shows an overview about three thermal storage technologies--sensible solid media, metallic latent and thermochemical thermal energy storage systems--and details about the development of an electrically heated (power-to-heat) solid media storage system to achieve high storage densities and to allow flexible thermal discharging values. Central works target the identification of suitable thermal management solutions in future electric vehicle concepts to increase range, efficiency and flexibility.
文摘This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.
基金This work was financially supported by the National Nat-ural Science Foundation of China(Nos.51874047 and 51504041)the Special Fund for the Construction of Innovat-ive Provinces in Hunan Province,China(No.2020RC3038)+2 种基金the Changsha City Fund for Distinguished and Innovative Young Scholars,China(No.kq1802007)the Fund for Uni-versity Young Core Instructors of Hunan Province,China,the Innovation Program for Postgraduate of Changsha Uni-versity of Science and Technology,Chinathe Outstand-ing Youth Project of Hunan Provincial Department of Educa-tion,China(No.18B148).
文摘Mica was used as a supporting matrix for composite phase change materials(PCMs)in this work because of its distinctive morphology and structure.Composite PCMs were prepared using the vacuum impregnation method,in which mica served as the supporting material and polyethylene glycol(PEG)served as the PCM.Fourier transform infrared and X-ray diffraction analysis confirmed that the addition of PEG had no effect on the crystal structure of mica.Moreover,no chemical reaction occurred between PEG and mica during the vacuum impregnation process,and no new substance was formed.The maximum load of mica-stabilized PEG was 46.24%,the phase change temperature of M_(400)/PEG was 46.03℃,and the latent heat values of melting and cooling were 77.75 and 77.73 J·g^(−1),respectively.The thermal conductivity of M_(400)/PEG was 2.4 times that of pure PEG.The thermal infrared images indicated that the thermal response of M_(400)/PEG improved relative to that of pure PEG.The leakage test confirmed that mica could stabilize PEG and that M_(400)/PEG had great form-stabilized property.These results demonstrate that M_(400)/PEG has potential in the field of building energy conservation.
基金Project(50606007) supported by the National Natural Science Foundation of China
文摘To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) method based on thermal energy storage to eliminate frost off the outdoor coil surface was developed. Comparative experiments using both the stand reverse cycle defrosting (SRCD) method and the NRCD method were carried out on an experimental ASHP unit with a nominal 2.5 kW heating capacity. The results indicate that during defrosting operation, using the NRCD method improves discharge and suction pressures by 0.24 MPa and 0.19 MPa, respectively, shortens defrosting duration by 60%, and reduces the defrosting energy consumption by 48.1% in the experimental environment, compared with those by the use of SRCD method. Therefore, using the NRCD method can shorten the defrosting duration, improve the indoor thermal comfort, and reduce the defrosting energy consumption in defrosting.
基金Supported by the Research Fund of Gaziosmanpasa University (No.2003/42).
文摘Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.
基金Supported by the Sustainable Energy Propulsion System Program of 211’s Engineering Foundation, Shanghai Jiaotong University.
文摘The phase change characteristic of the power source of an underwater glider propelled by the ocean's thermal energy is the key factor in glider attitude control. A numerical model has been established based on the enthalpy method to analyze the phase change heat transfer process under convective boundary conditions. Phase change is not an isothermal process, but one that occurs at a range of temperature. The total melting time of the material is very sensitive to the surrounding temperature. When the temperature of the surroundings decreases 8 degrees, the total melting time increases 1.8 times. But variations in surrounding temperature have little effect on the initial temperature of phase change, and the slope of the temperature time history curve remains the same. However, the temperature at which phase change is completed decreases significantly. Our research shows that the phase change process is also affected by container size, boundary conditions, and the power source's cross sectional area. Materials stored in 3 cylindrical containers with a diameter of 38ram needed the shortest phase change time. Our conclusions should be helpful in effective design of underwater glider power systems.
基金the financial support from Max Planck Society,Germany,for the Computer-Aided Material and Process Design(CAMPD)project
文摘The selection of phase change material(PCM)plays an important role in developing high-efficient thermal energy storage(TES)processes.Ionic liquids(ILs)or organic salts are thermally stable,non-volatile,and non-flammable.Importantly,researchers have proved that some ILs possess higher latent heat of fusion than conventional PCMs.Despite these attractive characteristics,yet surprisingly,little research has been performed to the systematic selection or structural design of ILs for TES.Besides,most of the existing work is only focused on the latent heat when selecting PCMs.However,one should note that other properties such as heat capacity and thermal conductivity could affect the TES performance as well.In this work,we propose a computer-aided molecular design(CAMD)based method to systematically design IL PCMs for a practical TES process.The effects of different IL properties are simultaneously captured in the IL property models and TES process models.Optimal ILs holding a best compromise of all the properties are identified through the solution of a formulated CAMD problem where the TES performance of the process is maximized.[MPyEtOH][TfO]is found to be the best material and excitingly,the identified top nine ILs all show a higher TES performance than the traditional PCM paraffin wax at 10 h thermal charging time.
基金Funded by the National Natural Science Foundation of China(No.51778582)the Public Projects of Zhejiang Province(2016C31009)the Science and Technology Projects of Ministry of Housing and Urban Rural Construction(2014-K4-011)
文摘Palygorskite/paraffin phase-change composites were prepared by the combination of purified palygorskite clay and sliced paraffin. Then, this composite was used in the Trombe wall to improve its energy storage ability. Further, its energy storage ability was compared to that of ordinary concrete wall through contrastive test. The experiments show that palygorskite clay is a type of clay mineral with strong adsorption ability, and the purity of natural palygorskite clay can reach up to 97.1% after certain purification processes. Paraffin is well adsorbed by palygorskite, and the test results show that the optimal adsorption ratio is palygorskite: paraffin = 2:1(mass ratio). Palygorskite/paraffin phase change composites can be obtained by using palygorskite as the adsorbing medium to adsorb paraffin. The composite materials exhibit good heat storage(release) performance, which can store heat with increasing environment temperature and release heat with decreasing temperature. This property not only increases the inertia to environment temperature change, but also promotes the energy migration in different time and space, thus achieving a certain energy-saving effect. The application of palygorskite/paraffin phase change composite materials to the Trombe wall can significantly reduce the fluctuation of indoor temperature and enhance the thermal inertia of indoor environment. From the aspect of energy storage effect, the Trombe wall fabricated using PCMs is significantly superior to the concrete wall with the same thickness.
文摘Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal energy.
文摘Phase change materials are one of the potential resources to replace fossil fuels in regards of supplying the energy of buildings.Basically,these materials absorb or release heat energy with the help of their latent heat.Phase change materials have low thermal conductivity and this makes it possible to use the physical properties of these materials in the tropical regions where the solar radiation is more direct and concentrated over a smaller area.In this theoretical work,an attempt has been made to study the melting process of these materials by applying constant heat flux and temperature.It was found that by increasing the thickness of phase change materials’layers,due to the melting,more thermal energy is stored.Simultaneously it reduces the penetration of excessive heat into the chamber,so that by increasing the thickness of paraffin materials up to 20 mm,the rate of temperature reduction reaches more than 18%.It was also recognized that increasing the values of constant input heat flux increases buoyancy effects.Increasing the Stefan number from 0.1 to 0.3,increases the temperature by 6%.