期刊文献+
共找到6,583篇文章
< 1 2 250 >
每页显示 20 50 100
Validating the use of ROS-scavenging bacteria as probiotics to increase coral resilience to thermal stress
1
作者 Xiaoyu TANG Qingsong YANG +5 位作者 Ying ZHANG Hanzhang WANG Juan LING Haiyan SUN Junde DONG Yanying ZHANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1242-1260,共19页
Thermal stress causes the overproduction and toxic accumulation of reactive oxygen species(ROS),which seems to be correlated with coral bleaching and,ultimately,death.The reduction of ROS concentration within the cora... Thermal stress causes the overproduction and toxic accumulation of reactive oxygen species(ROS),which seems to be correlated with coral bleaching and,ultimately,death.The reduction of ROS concentration within the coral holobiont could minimize the effects of thermal stress and support efforts to reduce coral decline globally.In the current study,we explored the physiological responses of Pocillopora damicornis to ROS-scavenging bacteria inoculation as well as the microbiome restructuring that correlates with P.damicornis’s resilience to thermal stress after probiotic inoculation.Inoculation of corals with ROS-scavenging bacteria enhanced coral health and reduced ROS concentration.Furthermore,the enhanced coral thermal resistance promoted by ROS-scavenging bacteria was also correlated with an overall coral microbiome restructuring.In addition,the complex network relationships between bacteria and Symbiodiniaceae in corals after ROS-scavenging bacteria inoculation contributed to corals’resilience to high temperatures.Besides,coral heat tolerance bacterial biomarkers,such as Myxococcota,were enriched in corals with added ROS-scavenging bacteria.Collectively,our findings validate the selected ROS-scavenging bacteria as coral probiotics that could help corals resist thermal stress on a short timescale.Additionally,our data contribute to our understanding of the potential interactions between different members of the coral holobiont and the use of probiotics as tools to aid coral restoration efforts. 展开更多
关键词 CORAL beneficial microorganisms for corals(BMCs) Symbiodiniaceae thermal stress coral bleaching
下载PDF
Analysis and verification of electrodynamic force,thermal stress and current sharing for CRAFT converter structure design
2
作者 王重马 石朝毅 +6 位作者 张秀青 卢文武 张胜 高先和 许涛 邵兴星 黄连生 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期104-111,共8页
In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research... In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research Facility for Fusion Technology(CRAFT),meticulous analysis of the converter's dynamic impact is carefully performed based on the worst fault current(400k A),firstly.Subsequently,the thermal stress analysis based on the maximum allowable steadystate temperature is finished,and the equivalent thermal stress,thermal deformation,maximum shear stress of a single bridge arm and the whole converter are studied.Furthermore,a simple research method involving the current-sharing characteristics of a bridge arm with multithyristor parallel connection is proposed using a combination of Simplorer with Q3D in ANSYS.The results show that the current-sharing characteristics are excellent.Finally,the structural design has been meticulously tailored to meet the established requirements. 展开更多
关键词 electrodynamic analysis thermal stress current-sharing characteristics CRAFT
下载PDF
A thermal stress loading technique for large-sized hot dry rock mechanical tests
3
作者 Huiling Ci Bing Bai +2 位作者 Hongwu Lei Yan Zou Jianfeng Liu 《Deep Underground Science and Engineering》 2024年第3期326-337,共12页
Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host fra... Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed. 展开更多
关键词 deep rock engineering high-temperature and high-stress conditions hot dry rock large-sized model test thermal stress loading
下载PDF
Thermal Stresses and Cracks During the Growth of Large-sized Sapphire with SAPMAC Method 被引量:2
4
作者 许承海 孟松鹤 +2 位作者 张明福 左洪波 汪桂根 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期475-480,共6页
The finite-element method has been used to study the thermal stress distribution in large-sized sapphire crystals grown with the sapphire growth technique with micro-pulling and shoulder-expanding at cooled center (S... The finite-element method has been used to study the thermal stress distribution in large-sized sapphire crystals grown with the sapphire growth technique with micro-pulling and shoulder-expanding at cooled center (SAPMAC) method. A critical defect model has been established to explain the growth and propagation of cracks during the sapphire growing process. It is demonstrated that the stress field depends on the growth rate, the ambient temperature and the crystallizing direction. High stresses always exist near the growth interfaces, at the shoulder-expanding locations, the tailing locations and the sites where the diameters undergo sharp changes. The maximum stresses always occur at the interface of seeds and crystals. Cracks often form in the critical defect region and spread in the m-planes and a-planes under applied tensile stresses during crystal growth. The experimental results have verified that with the improved system of crystal growth and well-controlled techniques, the large-sized sapphire crystals of high quality can be grown due to absence of cracks. 展开更多
关键词 thermal stress CRACK SAPPHIRE SAPMAC method
下载PDF
Numerical Simulation of Temperature Field and Thermal Stress Field of Work Roll During Hot Strip Rolling 被引量:13
5
作者 LI Chang-sheng YU Hai-liang DENG Guan-yu LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第5期18-21,共4页
Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll... Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling. 展开更多
关键词 hot strip mill ROLL temperature field thermal stress finite element method
下载PDF
Application of thermal stress model to paint removal by Q-switched Nd:YAG laser 被引量:7
6
作者 邹万芳 谢应茂 +2 位作者 肖兴 曾祥志 罗颖 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期433-438,共6页
In this paper, we demonstrate that thermal stress is the main mechanism in the process of paint removal by Q-switched Nd:YAG laser (λ = 1064 nm, τ = 10 ns). A theoretical model ofpaint removal by short-pulse lase... In this paper, we demonstrate that thermal stress is the main mechanism in the process of paint removal by Q-switched Nd:YAG laser (λ = 1064 nm, τ = 10 ns). A theoretical model ofpaint removal by short-pulse laser is established from the perspective of thermal stress. Thermal stress is generated by thermal expansion, and the temperatures of different samples are calculated according to the one-dimensional (1D) heat conduction equation. The theoretical cleaning threshold can be obtained by comparing thermal stress with the adhesion of paint, and the theoretical damage threshold is obtained by calculating the temperature. Moreover, the theoretical calculations are verified by experimental results. It is shown that the thermal stress model of the laser cleaning is very useful to choose the appropriate laser fluence in the practical applications of paint removal by Q-switched Nd: YAG laser because our model can validly balance the efficiency of laser cleaning and the safety of the substrate. 展开更多
关键词 laser cleaning thermal stress cleaning threshold damage threshold
下载PDF
THERMAL STRESSES RELAXATION DESIGN OF Ni/NiFe_(2)O_(4) SYSTEM FUNCTIONALLY GRADED CERMET INERT ANODE 被引量:4
7
作者 J. Li Q.S. Zhang Y.Q. Lai S.L. Ye Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期635-641,共7页
The thermal stresses relaxation of Ni/NiFe2O4 system functionally graded cermet inert anode for aluminum electrolysis was optimally designed. The transient thermal stresses of the inert anode under complex boundary co... The thermal stresses relaxation of Ni/NiFe2O4 system functionally graded cermet inert anode for aluminum electrolysis was optimally designed. The transient thermal stresses of the inert anode under complex boundary condition during high-temp (955℃) electrolysis were calculated using the finite-element software ANSYS, the influence of different parameters on the distribution of the thermal stresses were analyzed. The results showed that, during the process of thermal shock, the thermal hoop tensile stress on the surface of the anode is very large, which is possibly the major cause of anode crack; when the radius of the anode is between 0.05-0.15m, a range that can be realized by recent manufacturing technology, the optimum composition distribution exponent p is 0.25; The hoop tensile stresses reduce with the decrease of anode scale and also decrease with the decrease of the convection coefficient between the electrolyte and the anode. 展开更多
关键词 functionally graded material (FGM) transient thermal stresses ANSYS inert anode aluminum electrolysis
下载PDF
EFFECT OF STRUCTURAL PARAMETERS ON THE THERMAL STRESS OF A NiFe_(2)O_(4)-BASED CERMET INERT ANODE IN ALUMINUM ELECTROLYSIS 被引量:4
8
作者 J. Li Z.G. Wang Y.Q. Lai Y.Y. Wu S.L. Ye 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第2期139-147,共9页
Inert anode has been a hot issue in the aluminum industry for many decades. With the help of FEA (finite element analysis) software ANSYS, a model was developed to simulate the thermal stress distribution working co... Inert anode has been a hot issue in the aluminum industry for many decades. With the help of FEA (finite element analysis) software ANSYS, a model was developed to simulate the thermal stress distribution working condition of an inert anode. To reduce its thermal stress, the effect of some parameters on the thermal stress distribution was investigated, including the anode height, the anode radius, the hole depth, the hole radius, and the radius of inner chamfer and outer chamfer. The results showed that in the actual working condition of an inert anode, there existed a large axial tensile stress near the tangent interface between the anode and bath, which was the major cause of anode breaking. Increasing the anode height and reducing the hole depth properly seemed to be beneficial for the stress distribution. With the increase of anode radius, the stress distribution became better first and then deteriorated, the reasonable value was between 0.045 to 0.06m. The hole radius had a significant effect on the stress and a smaller radius would reduce the thermal stress. The effect of the radius of the inner chamfer and the outer chamfer was less than other parameters. 展开更多
关键词 inert anode thermal stress structural parameter aluminum electrolysis
下载PDF
Effect of fin attachment on thermal stress reduction of exhaust manifold of an off road diesel engine 被引量:4
9
作者 Ali Akbar Partoaa Morteza Abdolzadeh Masoud Rezaeizadeh 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期546-559,共14页
The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of... The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase. 展开更多
关键词 MANIFOLD EXHAUST simulation MODIFICATION thermal stress deformation diesel engine
下载PDF
Using finite difference method to simulate casting thermal stress 被引量:6
10
作者 Liao Dunming Zhang Bin +2 位作者 Zhou Jianxin Liu Ruixiang Chen Liliang 《China Foundry》 SCIE CAS 2011年第2期177-181,共5页
Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the t... Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the thermal stress distribution during casting process,a unilateral thermal-stress coupling model was employed to simulate 3D casting stress using Finite Difference Method(FDM),namely all the traditional thermal-elastic-plastic equations are numerically and differentially discrete.A FDM/FDM numerical simulation system was developed to analyze temperature and stress fields during casting solidification process.Two practical verifications were carried out,and the results from simulation basically coincided with practical cases.The results indicated that the FDM/FDM stress simulation system can be used to simulate the formation of residual stress,and to predict the occurrence of hot tearing.Because heat transfer and stress analysis are all based on FDM,they can use the same FD model,which can avoid the matching process between different models,and hence reduce temperature-load transferring errors.This approach makes the simulation of fluid flow,heat transfer and stress analysis unify into one single model. 展开更多
关键词 thermal stress numerical simulation finite difference method (FDM) casting solidification process
下载PDF
Modeling in SolidWorks and analysis of temperature and thermal stress during construction of intake tower 被引量:3
11
作者 Hong-yang ZHANG Tong-chun LI Zong-kun LI 《Water Science and Engineering》 EI CAS 2009年第1期95-102,共8页
With a focus on the intake tower of the Yanshan Reservoir, this paper discusses the method of modeling in the 3D CAD software SolidWorks and the interface processing between SolidWorks and the ANSYS code, which decrea... With a focus on the intake tower of the Yanshan Reservoir, this paper discusses the method of modeling in the 3D CAD software SolidWorks and the interface processing between SolidWorks and the ANSYS code, which decreases the difficulty in modeling complicated models in ANSYS. In view of the function of the birth-death element and secondary development with APDL (ANSYS parametric design language), a simulation analysis of the temperature field and thermal stress during the construction period of the intake tower was conveniently conducted. The results show that the temperature rise is about 29.934 ℃ over 3 or 4 days. The temperature differences between any two points are less than 24 ℃. The thermal stress increases with the temperature difference and reaches its maximum of 1.68 MPa at the interface between two concrete layers. 展开更多
关键词 SOLIDWORKS ANSYS APDL birth-death element temperature field thermal stress
下载PDF
Numerical investigation of temperature gradient-induced thermal stress for steel–concrete composite bridge deck in suspension bridges 被引量:6
12
作者 WANG Da DENG Yang +1 位作者 LIU Yong-ming LIU Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期185-195,共11页
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit... A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study. 展开更多
关键词 suspension bridge steel–concrete composite bridge deck vertical temperature gradient finite element method thermal stress
下载PDF
A new analytical model for thermal stresses in multi-phase materials and lifetime prediction methods 被引量:3
13
作者 Ladislav Ceniga 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第2期189-206,共18页
Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distribute... Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimensions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)- matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase materials. As functions of the particle volume fraction v, the inter-particle distances dl, d2, d3 along three mutually per- pendicular axes, and the particle and envelope radii, R1 and R2, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep- resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials. 展开更多
关键词 thermal stress Multi-phase material Lifetime prediction Analytical modelling
下载PDF
Optimization design and residual thermal stress analysis of PDC functionally graded materials 被引量:5
14
作者 CAO Pin-lu LIU Bao-chang +1 位作者 YIN Kun ZHANG Zu-pei 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1318-1323,共6页
The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown ... The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown that they each have a remarkable stress concentration at the edge of the interfaces. The diamond coatings usually suffer premature failure because of spallation, distortion or defects such as cracks near the interface due to these excessive residual stresses. Results showed that the axial tensile stress in FGM coating is reduced from 840 MPa to 229 MPa compared with single coating, and that the shear stress is reduced from 671 MPa to 471 MPa. Therefore, the single coating is more prone to spallation and cracking than the FGM coating. The effects of the volume compositional distribution factor (n) and the number of the graded layers (L) on the thermal stresses in FGM coating are also discussed respectively. Modelling results showed that the optimum value of the compositional distribution factor is 1.2, and that the best number of the graded layers is 6. 展开更多
关键词 Functionally graded materials (FGM) Optimum design Polycrystalline diamond compact (PDC) Residual thermal stress Finite element method (FEM)
下载PDF
Temperature and Thermal Stress Distribution for Metal Mold in Squeeze Casting Process 被引量:2
15
作者 C.H.Lee S.H.Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第3期347-350,共4页
In the squeeze casting process, loaded high pressure (over approximately 200 MPa) and high temperature influence the thermo-mechanical behavior and performance of the used metal mold. Therefore, to safely maintain t... In the squeeze casting process, loaded high pressure (over approximately 200 MPa) and high temperature influence the thermo-mechanical behavior and performance of the used metal mold. Therefore, to safely maintain the metal molds, the thermo-mechanical characteristics (temperature and thermal stress) of metal mold in the squeeze casting must be investigated. In this paper, temperature and thermal stress distribution of steel mold in squeeze casting process were investigated by using a three-dimensional non-steady heat conduction analysis and a three-dimensional thermal elastic-plastic analysis considering temperature-dependent thermophysical and mechanical properties of the steel mold. 展开更多
关键词 Squeeze casting Steel mold thermal stress Thermo-Mechanical analysis
下载PDF
High-Order Lateral Buckling Analysis of Submarine Pipeline Under Thermal Stress 被引量:3
16
作者 郭林坪 刘润 《Transactions of Tianjin University》 EI CAS 2012年第6期411-418,共8页
It is of importance to study and predict the possible buckling of submarine pipeline under thermal stress in pipeline design.Since soil resistance is not strong enough to restrain the large deformation of pipeline,hig... It is of importance to study and predict the possible buckling of submarine pipeline under thermal stress in pipeline design.Since soil resistance is not strong enough to restrain the large deformation of pipeline,high-order buckling modes occur very easily.Analytical solutions to high-order buckling modes were obtained in this paper.The relationships between buckling temperature and the amplitude or the wavelength of buckling modes were established.Analytical solutions were obtained to predict the occurrence and consequence of in-service buckling of a heated pipeline in an oil field.The effects of temperature difference and properties of subsoil on buckling modes were investigated.The results show that buckling will occur once temperature difference exceeds safe temperature;high-order pipeline buckling occurs very easily;the larger the friction coefficients are,the safer the submarine pipeline will be. 展开更多
关键词 unburied submarine pipeline lateral buckling analytical solution high-order mode thermal stress
下载PDF
Modeling and simulation of 3D thermal stresses of large-sized castings in solidification processes 被引量:2
17
作者 J.Q.Wang D.W.Yu +2 位作者 X.Sun S.F.Su B.Z.Li 《China Foundry》 SCIE CAS 2004年第S1期20-24,共5页
When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by therm... When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique. 展开更多
关键词 Large-sized castings simulation of 3D temperature fields simulation of 3D thermal stress fields defect of hot cracking solidification process
下载PDF
THERMAL STRESS MEASUREMENT OF QUARTZ OSCILLATOR MODULE PACKAGING 被引量:2
18
作者 Ji Hongwei Qin Yuwen Chen Jinlong 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第3期251-258,共8页
The thermal stress of the quartz oscillator module packaging isinvestigated using digital-im- age correlation method (DICM), and theexperimental results are given. Under the quartz oscillator modulepackaging, the quar... The thermal stress of the quartz oscillator module packaging isinvestigated using digital-im- age correlation method (DICM), and theexperimental results are given. Under the quartz oscillator modulepackaging, the quartz oscillator and the Fe-Sn-Cu alloy frame arejoined together with the electroconductive adhesive (PI), and theelectroconductive adhesive needs to be cured twice at 150 deg. C and275 deg. C respective- ly. 展开更多
关键词 digital-image correlation method (DICM) thermal stress micro-zone strainmeasurement
下载PDF
Effects of displacement boundary conditions on thermal deformation in thermal stress problems 被引量:2
19
作者 S.Y.Kwak C.H.Lim J.H.Nam 《China Foundry》 SCIE CAS 2013年第3期187-194,共8页
Most computational structural engineers are paying more attention to applying loads rather than to DBCs (Displacement Boundary Conditions) because most static stable mechanical structures are working under already p... Most computational structural engineers are paying more attention to applying loads rather than to DBCs (Displacement Boundary Conditions) because most static stable mechanical structures are working under already prescribed displacement boundary conditions. In all of the computational analysis of solving a system of algebraic equations, such as FEM (Finite Element Method), three translational and three rotational degrees of freedom (DOF) should be constrained (by applying DBCs) before solving the system of algebraic equation in order to prevent rigid body motions of the analysis results (singular problem). However, it is very difficult for an inexperienced engineer or designer to apply proper DBCs in the case of thermal stress analysis where no prescribed DBCs or constraints exist, for example in water quenching for heat treatment. Moreover, improper DBCs cause incorrect solutions in thermal stress analysis, such as stress concentration or unreasonable deformation phases. To avoid these problems, we studied a technique which performs the thermal stress analysis without any DBCs; and then removes rigid body motions from the deformation results in a post process step as the need arises. The proposed technique makes it easy to apply DBCs and prevent the error caused by improper DBCs. We proved it was mathematically possible to solve a system of algebraic equations without a step of applying DBCs. We also compared the analysis results with those of a traditional procedure for real castings. 展开更多
关键词 thermal stress analysis displacement boundary conditions rigid body motion singular problem
下载PDF
Iterative reverse deformation optimization design of castings based on numerical simulation of solidification thermal stress 被引量:2
20
作者 Yu-hao Chen Dun-ming Liao +3 位作者 Wei-dong Li Tao Chen Ming Yang Jun-ke Shi 《China Foundry》 SCIE CAS 2022年第4期342-350,共9页
In the casting process,in order to compensate for the solidification shrinkage to obtain higher dimensional accuracy of the casting,it is often necessary to modify the original design of castings,and a suitable compen... In the casting process,in order to compensate for the solidification shrinkage to obtain higher dimensional accuracy of the casting,it is often necessary to modify the original design of castings,and a suitable compensation method has a decisive impact on the dimensional accuracy of the actual casting.In this study,based on solidification simulation,a design method of reverse deformation is proposed,and two compensation methods,empirical compensation and direct reverse deformation,are implemented.The simulation results show that the empirical compensation method has problems such as difficulty in determining the parameters and satisfaction of both the overall and local accuracy at the same time;while based on the simulation results for each node of the casting,the direct reverse deformation design achieves the design with shape.In addition,the casting model can be optimized through iterative revisions,so that higher dimensional accuracy can be continuously obtained in the subsequent design process.Therefore,the direct reverse deformation design is more accurate and reasonable compared to empirical compensation method. 展开更多
关键词 casting simulation thermal stress deformation dimensional compensation dimensional accuracy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部