Two micron SiC particles with angular and spherical shape and the sub-micron Al2O3 particles with spherical shape were introduced to reinforce 6061 aluminium by squeeze casting technology. Microstructures and effect o...Two micron SiC particles with angular and spherical shape and the sub-micron Al2O3 particles with spherical shape were introduced to reinforce 6061 aluminium by squeeze casting technology. Microstructures and effect of thermal-cooling cycle treatment (TCCT) on the thermal expansion behaviors of three composites were investigated. The results show that the composites are free of porosity and SiC/Al2O3 particles are distributed uniformly. Inflections at about 300℃ are observed in coefficient of thermal expansion (CTE) versus temperature curves of two SiCp/Al composites, and this characteristic is not affected by TCCT. The TCCT has significant effect on thermal expansion behavior of SiCp/Al composites and CTE of them after 3 cycles is lower than that of 1 or 5 cycles. However, no inflection is observed in Al2O3p/Al composite, while TCCT has effect on CTE of Al2O3p/Al composite. These results should be due to different relaxation behavior of internal stress in three composites.展开更多
In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive ...In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.展开更多
基金Project(20080430895) supported by China Postdoctoral Science FoundationProject(2008RFQXG045) supported by Special Fund of Technological Innovation of HarbinProject(HITQNJS.2009.021) supported by Development Program for Outstanding Young Teachers in Harbin Institute of Technology
文摘Two micron SiC particles with angular and spherical shape and the sub-micron Al2O3 particles with spherical shape were introduced to reinforce 6061 aluminium by squeeze casting technology. Microstructures and effect of thermal-cooling cycle treatment (TCCT) on the thermal expansion behaviors of three composites were investigated. The results show that the composites are free of porosity and SiC/Al2O3 particles are distributed uniformly. Inflections at about 300℃ are observed in coefficient of thermal expansion (CTE) versus temperature curves of two SiCp/Al composites, and this characteristic is not affected by TCCT. The TCCT has significant effect on thermal expansion behavior of SiCp/Al composites and CTE of them after 3 cycles is lower than that of 1 or 5 cycles. However, no inflection is observed in Al2O3p/Al composite, while TCCT has effect on CTE of Al2O3p/Al composite. These results should be due to different relaxation behavior of internal stress in three composites.
基金Funded by National Key R&D Program(No.2016YFC0701003)of Chinathe Fundamental Research Funds for the Central Universities
文摘In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.