期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Atomic-resolution Interfacial Microstructure and Thermo-electro-magnetic Energy Conversion Performance of Gd/Bi_(0.5)Sb_(1.5)Te_(3)Composites
1
作者 Chengshan Liu Wenjie Xu +10 位作者 Ping Wei Shaoqiu Ke Wenjun Cui Longzhou Li Dong Liang Xianfeng Ye Tiantian Chen Xiaolei Nie Wanting Zhu Wenyu Zhao Qingjie Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期355-363,共9页
Thermo-electro-magnetic materials with simultaneously large magnetocaloric(MC)and thermoelectric(TE)effects are the core part for designing TE/MC all-solid-state cooling devices.Compositing MC phase with TE material i... Thermo-electro-magnetic materials with simultaneously large magnetocaloric(MC)and thermoelectric(TE)effects are the core part for designing TE/MC all-solid-state cooling devices.Compositing MC phase with TE material is an effective approach.However,the elemental diffusion and chemical reaction occurring at the two-phase interfaces could significantly impair the cooling performance.Herein,Gd/Bi_(0.5)Sb_(1.5)Te_(3)(Gd/BST)composites were prepared by a low-temperature high-pressure spark plasma sintering method with an aim to control the extent of interfacial reaction.The reaction of Gd with the diffusive Te and the formation of GdTe nanocrystals were identified at the Gd/BST interfaces by the atomic-resolution microscope.The formed Bi’_(Te)antisite defects and enhanced{000 l}preferential orientation in BST are responsible for the increased carrier concentration and mobility,which leads to optimized electrical properties.The heterogeneous interface phases,along with antisite defects,favor the phonon scattering enhancement and lattice thermal conductivity suppression.The optimized composite sintered at 693 K exhibited a maximum ZT of 1.27 at 300 K.Furthermore,the well-controlled interfacial reaction has a slight impact on the magnetic properties of Gd and a high magnetic entropy change is retained in the composites.This work provides a universal approach to fabricating thermo-electro-magnetic materials with excellent MC and TE properties. 展开更多
关键词 interfacial reaction magnetocaloric performance thermoelectric performance thermo-electro-magnetic materials
下载PDF
Control of interfacial reaction and defect formation in Gd/Bi_(2)Te_(2.7)Se_(0.3) composites with excellent thermoelectric and magnetocaloric properties
2
作者 薛天畅 魏平 +4 位作者 刘承姗 李龙舟 朱婉婷 聂晓蕾 赵文俞 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期474-481,共8页
The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_... The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_(2)Te_(2.7)Se_(0.3)(BTS)as the TE base material and Gd as the second-phase MC material,Gd/BTS composites were prepared by the spark plasma sintering method.In the composites,interfacial reaction between Gd and BTS was identified,resulting in the formation of Gd Te,which has a large impact on the electron concentration through the adjustment of defect concentration.The MC/TE composite containing 2.5 wt%Gd exhibited a ZT value of 0.6 at 300 K,essentially retaining the original TE performance,while all the composites largely maintained the excellent MC performance of Gd.This work provides a potential pathway to achieving high performance in MC/TE composites. 展开更多
关键词 thermo-electro-magnetic energy conversion materials interfacial reaction thermoelectric performance magnetic entropy change
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部