期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Performance of the First Pilot Thermoacoustic Refrigerator
1
作者 Mohammed Awwad Ali A1-Dabbas 《Journal of Energy and Power Engineering》 2013年第11期2106-2114,共9页
The simple goal of this work is constructing a cheap, demonstrative model of a thermoacoustic refrigerator. To this end, the author succeeded in designing, building and testing the first pilot thermoacoustic refrigera... The simple goal of this work is constructing a cheap, demonstrative model of a thermoacoustic refrigerator. To this end, the author succeeded in designing, building and testing the first pilot thermoacoustic refrigeration in Jordan basing on the theory of using sound waves as a coolant. The pilot thermoacoustic refrigerator was built from inexpensive and readily available parts in Mutah University, Jordan. The thermoacoustic refrigerator was operated for several hours. Consequentially, this experiment proved that thermoacoustic refrigerators were technically possible. Additionally, this experiment did yield some findings regarding the efficiency of thermoacoustic refrigeration. On other hand, solid flow CFD software was used to simulate the performance of thermoacoustic refrigerator especially the temperature and velocity inside the refrigerator. In general, very good agreement was deduced. 展开更多
关键词 thermoacoustic refrigeration RESONATOR heat exchanger SolidWorks software.
下载PDF
Performance Analysis of Thermoacoustic Refrigerator of 10 W Cooling Power Made up of Poly-Vinyl-Chloride for Different Parallel Plate Stacks by Using Helium as a Working Fluid
2
作者 N V Shivakumara BHEEMSHA Arya 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第6期2037-2055,共19页
Refrigerants are usually provided in the conventional refrigeration system although the refrigerants produce Chlorofluorocarbons(CFCs)and Hydro-chlorofluorocarbons(HCFCs),which are hazardous to the environment.However... Refrigerants are usually provided in the conventional refrigeration system although the refrigerants produce Chlorofluorocarbons(CFCs)and Hydro-chlorofluorocarbons(HCFCs),which are hazardous to the environment.However,these disadvantages can be overcome by using air or inert gas in the thermoacoustic refrigeration system.In the present experimental work,helium is used as a working gas with an operating pressure range of 0.2 MPa to 1.0 MPa in order to study the performance of thermoacoustic refrigerator(TAR)which is fabricated using Poly-Vinyl-Chloride(PVC).The parallel plate stacks with different porosity ratios have been considered to study the performance of TAR.The temperature difference between the hot and cold heat exchanger and acoustic dynamic pressure were recorded by using Bruel and Kjaer data acquisition system under different operating conditions.The effect of different operating parameters such as operating frequency(200 Hz to 600 Hz),cooling load(2 W to 10 W)and drive ratio(0.6%to 1.6%)have also been considered to study the performance of TAR.The TAR also modeled in DeltaEC software and the results are compared with the experimental outcomes and found to be in good agreement.The experimental results show that-2.1℃is the lowest temperature measured at cold heat exchanger by achieving the highest temperature difference of about 32.9℃.An improvement is around 36%as compared to that of previous experiments that used aluminium TAR.The highest Coefficient of Performance(COP)and the Relative Coefficient of Performance(COPR)are found to be 2.024 and 0.217,respectively. 展开更多
关键词 thermoacoustic refrigerator parallel plate stack porosity ratio temperature difference COP COPR
原文传递
Optimization of thermoacoustic refrigerator using response surface methodology
3
作者 HARIHARAN N. M. SIVASHANMUGAM P. KASTHURIRENGAN S. 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第1期72-82,共11页
Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing ... Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing involving in designing TAR using the Response Surface Methodology (RSM). A mathematical model is developed using the RSM based on the results obtained from DeltaEC software. For desired temperature difference of 40 K, optimized parameters suggested by the RSM are the frequency 254 Hz, stack position 0.108 m, stack length 0.08 m, and plate spacing 0.0005 m. The experiments were conducted with optimized parameters and simulations were performed using the Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) which showed similar results. 展开更多
关键词 Design Environment for Low-amplitude thermoacoustic Energy Conversion (DeltaEC) OPTIMIZATION Response Surface Methodology (RSM) temperature difference thermoacoustic refrigerator (TAR)
原文传递
Thermodynamic optimization for a quantum thermoacoustic refrigeration micro-cycle 被引量:3
4
作者 E Qing WU Feng +1 位作者 CHEN Lin-gen QIU Yi-nan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2754-2762,共9页
A model of quantum thermoacoustic refrigeration micro-cycle(QTARMC)is established in which heat leakage is considered.A single particle contained in a one-dimensional harmonic potential well is studied,and the system ... A model of quantum thermoacoustic refrigeration micro-cycle(QTARMC)is established in which heat leakage is considered.A single particle contained in a one-dimensional harmonic potential well is studied,and the system consists of countless replicas.Each particle is confined in its own potential well,whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions.Based on the Schrodinger equation,the expressions of coefficient of performance(COP)and cooling rate for the refrigerator are obtained.Effects of heat leakage on the optimal performance are discussed.The optimal performance region of the refrigeration cycle is obtained by the using ofΩobjective function.The results obtained can enrich the thermoacoustic theory and expand the application of quantum thermodynamics. 展开更多
关键词 thermoacoustic refrigeration quantum mechanics thermal phonon performance optimization finite time thermodynamics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部