期刊文献+
共找到928篇文章
< 1 2 47 >
每页显示 20 50 100
Single-and Two-band Transport Properties Crossover in Bi_(2)Te_(3)Based Thermoelectrics
1
作者 MENG Yuting WANG Xuemei +2 位作者 ZHANG Shuxian CHEN Zhiwei PEI Yanzhong 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第11期1283-1291,共9页
Based on Peltier effect,Bi_(2)Te_(3)-based alloy is widely used in commercial solid-state refrigeration at room temperature.The mainstream strategies for enhancing room-temperature thermoelectric performance in Bi_(2)... Based on Peltier effect,Bi_(2)Te_(3)-based alloy is widely used in commercial solid-state refrigeration at room temperature.The mainstream strategies for enhancing room-temperature thermoelectric performance in Bi_(2)Te_(3)focus on band and microstructure engineering.However,a clear understanding of the modulation of band structure and scattering through such engineering remains still challenging,because the minority carriers compensate partially the overall transport properties for the narrow-gap Bi_(2)Te_(3)at room temperature(known as the bipolar effect).The purpose of this work is to model the transport properties near and far away from the bipolar effect region for Bi_(2)Te_(3)-based thermoelectric material by a two-band model taking contributions of both majority and minority carriers into account.This is endowed by shifting the Fermi level from the conduction band to the valence band during the modeling.A large amount of data of Bi_(2)Te_(3)-based materials is collected from various studies for the comparison between experimental and predicted properties.The fundamental parameters,such as the density of states effective masses and deformation potential coefficients,of Bi_(2)Te_(3)-based materials are quantified.The analysis can help find out the impact factors(e.g.the mobility ratio between conduction and valence bands)for the improvement of thermoelectric properties for Bi_(2)Te_(3)-based alloys.This work provides a convenient tool for analyzing and predicting the transport performance even in the presence of bipolar effect,which can facilitate the development of the narrow-gap thermoelectric semiconductors. 展开更多
关键词 thermoelectric material Bi_(2)Te_(3)-based alloy two-band model narrow-gap thermoelectric semiconductor
下载PDF
Ga intercalation in van der Waals layers for advancing p-type Bi_(2)Te_(3)-based thermoelectrics 被引量:1
2
作者 陈艺源 石青 +5 位作者 钟艳 李瑞恒 林黎蔚 任丁 刘波 昂然 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期510-516,共7页
Tetradymite-structured chalcogenides,such as Bi_(2)Te_(3) and Sb_(2)Te_(3),are quasi-two-dimensional(2D)layered compounds,which are significant thermoelectric materials applied near room temperature.The intercalation ... Tetradymite-structured chalcogenides,such as Bi_(2)Te_(3) and Sb_(2)Te_(3),are quasi-two-dimensional(2D)layered compounds,which are significant thermoelectric materials applied near room temperature.The intercalation of guest species in van der Waals(vdW)gap implemented for tunning properties has attracted much attention in recent years.We attempt to insert Ga atoms in the vdW gap between the Te layers in p-type Bi_(0.3)Sb_(1.7)Te_(3)(BST)for further improving thermoelectrics.The vdW-related defects(including extrinsic interstitial and intrinsic defects)induced by Ga intercalation can not only modulate the carrier concentration but also enhance the texture,thereby yielding excellent electrical properties,which are reflected in the power factor PF~4.43 mW·m^(-1)·K^(-2).Furthermore,the intercalation of Ga produces multi-scale lattice imperfections such as point defects,Te precipitations,and nanopores,realizing the low lattice thermal conductivity in BST-Ga samples.Ultimately,a peak zT~1.1 at 373 K is achieved in the BST-1%Ga sample and greatly improved by~22%compared to the pristine BST.The weak bonding of vdW interlayer interaction can boost the synergistic effect for advancing BST-based or other layered thermoelectrics. 展开更多
关键词 THERMOELECTRICITY p-type(Bi Sb)_2Te_(3) van der Waals gap defects texture alignment
下载PDF
Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe_(2) alloys
3
作者 王亚东 张富界 +5 位作者 饶旭日 冯皓然 林黎蔚 任丁 刘波 昂然 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期598-604,共7页
AgCrSe2-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties.However,the ultra-low carrier concentration and... AgCrSe2-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties.However,the ultra-low carrier concentration and the high Ag_(Cr)deep-level defects limit the overall thermoelectric performance.Here,we successfully introduced Pb into Ag-deficient Ag_(0.97)CrSe_(2) alloys to tune the carrier concentration across a broad temperature range.The Pb^(2+) as an acceptor dopant preferentially occupies Cr sites,boosting the hole carrier concentration to 1.77×10^(19) cm^(-3) at room temperature.Furthermore,the Pb strongly inhibits the creation of intrinsic Ag_(Cr) defects,weakens the increased thermal excited ionization with the increasing temperature and slowed the rising trend of the carrier concentration.The designed carrier concentration matches the theoretically predicted optimized one over the entire temperature range,leading to a remarkable enhancement in power factor,especially the maximum power factor of ~500 μW·m^(-1)·K^(-2) at 750 K is superior to most previous results.Additionally,the abundant point defects promote phonon scattering,thus reducing the lattice thermal conductivity.As a result,the maximum figure of merit zT(~0.51 at 750 K) is achieved in Ag_(0.97)Cr_(0.995)Pb_(0.005)Se_(2).This work confirms the feasibility of manipulating deep-level defects to achieve temperature-dependent optimal carrier concentration and provides a valuable guidance for other thermoelectric materials. 展开更多
关键词 AgCrSe2 deep-level defects carrier concentration modulation thermoelectric properties
下载PDF
Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer(GaN)_(1-x)(ZnO)_(x)
4
作者 Hanpu Liang Yifeng Duan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期461-468,共8页
Nonisovalent(GaN)_(1-x)(ZnO)_(x)alloys are more technologically promising than their binary counterparts because of the abruptly reduced band gap.Unfortunately,the lack of two-dimensional(2D)configurations as well as ... Nonisovalent(GaN)_(1-x)(ZnO)_(x)alloys are more technologically promising than their binary counterparts because of the abruptly reduced band gap.Unfortunately,the lack of two-dimensional(2D)configurations as well as complete stoichiometries hinders to further explore the thermal transport,thermoelectrics,and adsorption/permeation.We identify that multilayer(GaN)_(1-x)(ZnO)_(x)stabilize as wurtzite-like Pm-(GaN)_(3)(ZnO)_(1),Pmc2_(1)-(Ga N)_(1)(ZnO)_(1),P3m1-(GaN)_(1)(ZnO)_(2),and haeckelite C2/m-(GaN)_(1)(ZnO)_(3)via structural searches.P3m1-(GaN)_(1)(ZnO)_(2)shares the excellent thermoelectrics with the figure of merit ZT as high as 3.08 at 900 K for the p-type doping due to the ultralow lattice thermal conductivity,which mainly arises from the strong anharmonicity by the interlayer asymmetrical charge distributions.The p–d coupling is prohibited from the group theory in C2/m-(Ga N)_(1)(ZnO)_(3),which thereby results in the anomalous band structure versus Zn O composition.To unveil the adsorption/permeation of H^(+),Na^(+),and OH^(-)ions in AA-stacking configurations,the potential wells and barriers are explored from the Coulomb interaction and the ionic size.Our work is helpful in experimental fabrication of novel optoelectronic and thermoelectric devices by 2D(GaN)_(1-x)(ZnO)_(x)alloys. 展开更多
关键词 thermal transport ANHARMONICITY THERMOELECTRICITY nonisovalent alloys
下载PDF
The Quantum Chemistry Calculation and Thermoelectricsof Bi-Sb-Te Series
5
作者 闵新民 HONGHan-lie ANJi-ming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第2期6-9,共4页
The density junction theory and discrete variation method ( DFT - DVM) was used to study correlation between composition, structure, chemical bond, and property of thermoelectrics of Bi-Sb-Te series. 8 models of Bi20-... The density junction theory and discrete variation method ( DFT - DVM) was used to study correlation between composition, structure, chemical bond, and property of thermoelectrics of Bi-Sb-Te series. 8 models of Bi20-xSbxTe32(x = 0,2,6,8,12,14,18 and 20) were calculated. The results show that there is less difference in the ionic bonds between Te( I)-Bi(Sb) and Te(Ⅱ)-Bi(Sb) , but the covalent bond of Te(Ⅰ)-Bi( Sb ) is stronger than that of Te(Ⅱ)-Bi( Sb ) . The interaction between Te(Ⅰ) and Te(Ⅰ) in different layers is the weakest and the interaction should be Van Der Wools power. The charge of Sb is lower than that of Bi, and the ionic bond of Te-Sb is weaker than that of Te-Bi. The covalent bond of Te-Sb is also weaker than that of Te-Bi. Therefore, the thermoelectric property may be imfiroved by adjusting the electrical conductivity and thermal conductivity through changing the composition in the compounds of Bi-Sb-Te. The calculated results are consistent with the experiments. 展开更多
关键词 bismuth telluride THERMOELECTRIC structure and property quantum chemistry calculation
下载PDF
Quasi-Solid Thermoelectrics for Wearable Low-Grade Energy Harvesting
6
作者 Zixian Dong Qingtao Xiang +4 位作者 Zihan Zhang Jihe Tang Feng Li Kuan Sun Shanshan Chen 《CCS Chemistry》 CSCD 2024年第11期2627-2643,共17页
Ionic thermoelectricity(i-TE),as a new energy conversion and storage technology,has been widely discussed by the academic community.As one of the representatives of low-grade thermal energy recovery,i-TE has made rema... Ionic thermoelectricity(i-TE),as a new energy conversion and storage technology,has been widely discussed by the academic community.As one of the representatives of low-grade thermal energy recovery,i-TE has made remarkable progress and become an influential research direction in the energy field.Among them,thermoelectric ionogels have a wide range of applications in the field of energy recovery and utilization due to their excellent flexibility,stability,and thermoelectric conversion ability,providing many application possibilities for such materials.The development of highly efficient and stable ionic thermoelectric devices is largely dependent on the development of new materials and structural designs.This paper focuses on the recent strategies for improving the efficiency of thermoelectric conversion in the field of ionic thermoelectric gels,including new methods for material design,structural optimization,and innovative developments in the application of thermoelectric materials.The evaluation indicators of thermoelectric conversion efficiency are discussed,including ionic thermal voltage,ionic conductivity and power output,ductility,and self-healing properties.Additionally,various application devices based on thermoelectric materials with excellent thermoelectric conversion properties are highlighted.Further,different challenges and strategies that need to be addressed are presented in the hope of providing inspiration and guidance for the commercialization of i-TE. 展开更多
关键词 ionic thermoelectric materials wearable thermoelectrics Soret effect quasi-solid state
原文传递
Weavable thermoelectrics: advances, controversies, and future developments 被引量:1
7
作者 Xiao-Lei Shi Shuai Sun +4 位作者 Ting Wu Jian Tu Zhiming Zhou Qingfeng Liu Zhi-Gang Chen 《Materials Futures》 2024年第1期63-94,共32页
Owing to the capability of the conversion between thermal energy and electrical energy and their advantages of light weight,compactness,noise-free operation,and precision reliability,wearable thermoelectrics show grea... Owing to the capability of the conversion between thermal energy and electrical energy and their advantages of light weight,compactness,noise-free operation,and precision reliability,wearable thermoelectrics show great potential for diverse applications.Among them,weavable thermoelectrics,a subclass with inherent flexibility,wearability,and operability,find utility in harnessing waste heat from irregular heat sources.Given the rapid advancements in this field,a timely review is essential to consolidate the progress and challenge.Here,we provide an overview of the state of weavable thermoelectric materials and devices in wearable smart textiles,encompassing mechanisms,materials,fabrications,device structures,and applications from recent advancements,challenges,and prospects.This review can serve as a valuable reference for researchers in the field of flexible wearable thermoelectric materials and devices and their applications. 展开更多
关键词 THERMOELECTRIC WEAVING materials structure DEVICE
原文传递
Revolution in thermoelectric cooling using PbSe thermoelectrics by grid plainification
8
作者 Xiao-Lei Shi Qingfeng Liu Zhi-Gang Chen 《Science China Materials》 SCIE EI CAS CSCD 2024年第5期1672-1673,共2页
Thermoelectric materials and devices enable direct conversion between heat and electricity,holding potential applications in thermoelectric power generation,localized cooling,and electronic thermal management[1].Howev... Thermoelectric materials and devices enable direct conversion between heat and electricity,holding potential applications in thermoelectric power generation,localized cooling,and electronic thermal management[1].However,despite widespread applications,thermoelectric technology remains constrained by material performance[2]. 展开更多
关键词 enable THERMOELECTRIC CONSTRAINED
原文传递
Close-packed layer spacing as a practical guideline for structure symmetry manipulation of IV-VI/I-V-VI_(2) thermoelectrics
9
作者 Tao Jin Long Yang +2 位作者 Xinyue Zhang Wen Li Yanzhong Pei 《InfoMat》 SCIE CSCD 2024年第2期99-106,共8页
The crystal-structure symmetry in real space can be inherited in the reciprocal space,making high-symmetry materials the top candidates for thermoelectrics due to their potential for significant electronic band degene... The crystal-structure symmetry in real space can be inherited in the reciprocal space,making high-symmetry materials the top candidates for thermoelectrics due to their potential for significant electronic band degeneracy.A practical indicator that can quantitatively describe structural changes would help facilitate the advanced thermoelectric material design.In face-centered cubic structures,the spatial environment of the same crystallographic plane family is isotropic,such that the distances between the close-packed layers can be derived from the atomic distances within the layers.Inspired by this,the relationship between inter-and intra-layer geometric information can be used to compare crystal structures with their desired cubic symmetry.The close-packed layer spacing was found to be a practical guideline of crystal structure symmetry in IV-VI chalcogenides and I-V-VI_(2) ternary semiconductors,both of which are historically important thermoelectrics.The continuous structural evolution toward high symmetry can be described by the layer spacing when temperature or/and composition change,which is demonstrated by a series of pristine and alloyed thermoelectric materials in this work.The layerspacing-based guideline provides a quantitative pathway for manipulating crystal structures to improve the electrical and thermal properties of thermoelectric materials. 展开更多
关键词 phase transition structure manipulation thermoelectric materials x-ray diffraction
原文传递
Clathrate structure of YB_(3)C_(3) for high-performance thermoelectrics with superior mechanical properties
10
作者 Yangfan Cui Shuai Duan +5 位作者 Xiaojun Wang Qinghang Tang Jinyang Xi Xiaobing Liu Yongsheng Zhang Xin Chen 《Journal of Materiomics》 SCIE CSCD 2024年第4期783-791,共9页
Exploring high-performance thermoelectric materials with improved mechanical properties is important for broadening the application scope and the assembly requirement of stable devices.This work presents an effective ... Exploring high-performance thermoelectric materials with improved mechanical properties is important for broadening the application scope and the assembly requirement of stable devices.This work presents an effective strategy to discover hard thermoelectric material by inserting foreign atoms in the rigid covalent framework.We demonstrate this in boron-carbon clathrate VII structure,showing a promising candidate for highly efficient thermoelectric energy conversion,especially with Y atom filled in the cage,with a peak zT of 0.73 at 1,000 K.The ab initio calculations indicate that YB_(3)C_(3) system has low lattice thermal conductivity of 4.5 W/(m·K)at 1,000 K due to the strong rattling of encaged Y atom.The strongly covalent framework provides highly degenerate band structures consisting of heavy and light electron pockets,which can maintain high carrier mobility arising from small effective mass and thus large group velocity.Consequently,high power factor can be achieved in YB_(3)C_(3) for both electron and hole doping.In addition,it exhibits well mechanical properties and a Vickers hardness of 23.7 GPa because of the strong covalent boron-carbon framework.This work provides a novel avenue for the search of high-performance thermoelectric materials with excellent mechanical properties,based on boron-carbon clathrate structure. 展开更多
关键词 Clathrate structure Thermoelectric performance First-principles calculations Mechanical properties Thermal conductivity
原文传递
Origin of off-centering effect and the influence on heat transport in thermoelectrics
11
作者 Hongyao Xie Li-Dong Zhao 《Materials Futures》 2024年第1期142-149,共8页
Recently,off-centering behavior has been discovered in a series of thermoelectric materials.This behavior indicates that the constituent atoms of the lattice displace from their coordination centers,leading to the loc... Recently,off-centering behavior has been discovered in a series of thermoelectric materials.This behavior indicates that the constituent atoms of the lattice displace from their coordination centers,leading to the locally distorted state and local symmetry breaking,while the material still retains its original crystallographic symmetry.This effect has been proved to be the root cause of ultralow thermal conductivity in off-centering materials,and is considered as an effective tool to regulate the thermal conductivity and improve the thermoelectric performance.Herein,we present a collection of recently discovered off-centering compounds,discuss their electronic origins and local coordination structures,and illuminate the underlying mechanism of the off-centering effect on phonon transport and thermal conductivity.This paper presents a comprehensive view of our current understanding to the off-centering effect,and provides a new idea for designing high performance thermoelectrics. 展开更多
关键词 THERMOELECTRIC thermal conductivity off-centering behavior acoustic-optical phonon scattering
原文传递
The MatHub-3d first-principles repository and the applications on thermoelectrics
12
作者 Lu Liu Mingjia Yao +13 位作者 Yuxiang Wang Yeqing Jin Jialin Ji Huifang Luo Yan Cao Yifei Xiong Ye Sheng Xin Li Di Qiu Lili Xi Jinyang Xi Wenqing Zhang Lidong Chen Jiong Yang 《Materials Genome Engineering Advances》 2024年第1期1-20,共20页
Following the Materials Genome Initiative project,materials research has embarked a new research paradigm centered around material repositories,significantly accelerating the discovery of novel materials,such as therm... Following the Materials Genome Initiative project,materials research has embarked a new research paradigm centered around material repositories,significantly accelerating the discovery of novel materials,such as thermoelectrics.Thermoelectric materials,capable of directly converting heat into electricity,are garnering increasing attention in applications like waste heat recovery and refrigeration.To facilitate research in this emerging paradigm,we have established the Materials Hub with Three-Dimensional Structures(MatHub-3d)repository,which serves as the foundation for high-throughput(HTP)calculations,property analysis,and the design of thermoelectric materials.In this review,we summarize recent advancements in thermoelectric materials powered by the MatHub-3d,specifically HTP calculations of transport properties and material design on key factors.For HTP calculations,we develop the electrical transport package for HTP purpose,and utilize it for materials screening.In some works,we investigate the relationship between transport properties and chemical bonds for particular types of thermoelectric compounds based on HTP results,enhancing the fundamental understanding about interested compounds.In our work associated with material design,we primarily utilize key factors beyond transport properties to further expedite materials screening and speedily identify specific materials for further theoretical/experimental analyses.Finally,we discuss the future developments of the MatHub-3d and the evolving directions of database-driven thermoelectric research. 展开更多
关键词 high-throughput calculations key factors material design MatHub-3d thermoelectrics
原文传递
Review on Fiber-Based Thermoelectrics:Materials,Devices,and Textiles
13
作者 Yanan Shen Xue Han +8 位作者 Pengyu Zhang Xinyi Chen Xiao Yang Ding Liu Xiaona Yang Xinghua Zheng Haisheng Chen Kun Zhang Ting Zhang 《Advanced Fiber Materials》 SCIE EI CAS 2023年第4期1105-1140,共36页
With the development and prosperity of Internet of Things(IoT)technology,wearable electronics have brought fresh changes to our lives.The demands for low power consumption and mini-type wearable power systems for wear... With the development and prosperity of Internet of Things(IoT)technology,wearable electronics have brought fresh changes to our lives.The demands for low power consumption and mini-type wearable power systems for wearable electronics are more urgent than ever.Thermoelectric materials can efficiently convert the temperature difference between body and environment into electrical energy without the need for mechanical components,making them one of the ideal candidates for wearable power systems.In recent years,a variety of high-performance thermoelectric materials and processes for the preparation of large-scale single-fiber devices have emerged,driving the application of flexible fiber-based thermoelectric generators.By weaving thermoelectric fibers into a textile that conforms to human skin,it can achieve stable operation for long periods even when the human body is in motion.In this review,the complete process from thermoelectric materials to single-fiber/yarn devices to thermoelectric textiles is introduced comprehensively.Strategies for enhancing thermoelectric performance,processing techniques for fiber devices,and the wide applications of thermoelectric textiles are summarized.In addition,the challenges of ductile thermoelectric materials,system integration,and specifications are discussed,and the relevant developments in this field are prospected. 展开更多
关键词 THERMOELECTRIC FIBER Material Device TEXTILE
原文传递
Harness High-Temperature Thermal Energy via Elastic Thermoelectric Aerogels 被引量:1
14
作者 Hongxiong Li Zhaofu Ding +5 位作者 Quan Zhou Jun Chen Zhuoxin Liu Chunyu Du Lirong Liang Guangming Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期196-210,共15页
Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature moni... Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare. 展开更多
关键词 thermoelectrics AEROGEL SELF-POWERED High-temperature monitoring High-temperature warning
下载PDF
Waste Cotton-Derived Fiber-Based Thermoelectric Aerogel for Wearable and Self-Powered Temperature-Compression Strain Dual-Parameter Sensing
15
作者 Xinyang He Mingyuan Liu +7 位作者 Jiaxin Cai Zhen Li Zhilin Teng Yunna Hao Yifan Cui Jianyong Yu Liming Wang Xiaohong Qin 《Engineering》 SCIE EI CAS CSCD 2024年第8期235-243,共9页
The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems ca... The rapid development of the global economy and population growth are accompanied by the production of numerous waste textiles.This leads to a waste of limited resources and serious environmental pollution problems caused by improper disposal.The rational recycling of wasted textiles and their transformation into high-value-added emerging products,such as smart wearable devices,is fascinating.Here,we propose a novel roadmap for turning waste cotton fabrics into three-dimensional elastic fiber-based thermoelectric aerogels by a one-step lyophilization process with decoupled self-powered temperature-compression strain dual-parameter sensing properties.The thermoelectric aerogel exhibits a fast compression response time of 0.2 s,a relatively high Seebeck coefficient of 43μV·K^(-1),and an ultralow thermal conductivity of less than 0.04 W·m^(-1)·K^(-1).The cross-linking of trimethoxy(methyl)silane(MTMS)and cellulose endowed the aerogel with excellent elasticity,allowing it to be used as a compressive strain sensor for guessing games and facial expression recognition.In addition,based on the thermoelectric effect,the aerogel can perform temperature detection and differentiation in self-powered mode with the output thermal voltage as the stimulus signal.Furthermore,the wearable system,prepared by connecting the aerogel-prepared array device with a wireless transmission module,allows for temperature alerts in a mobile phone application without signal interference due to the compressive strains generated during gripping.Hence,our strategy is significant for reducing global environmental pollution and provides a revelatory path for transforming waste textiles into high-value-added smart wearable devices. 展开更多
关键词 Waste textiles High value-added recycling thermoelectrics ELASTICITY Decoupled sensing
下载PDF
Low-Cost and Biodegradable Thermoelectric Devices Based on van der Waals Semiconductors on Paper Substrates
16
作者 Gulsum Ersu Carmen Munuera +12 位作者 Federico J.Mompean Daniel Vaquero Jorge Quereda João Elias F.S.Rodrigues Jose A.Alonso Eduardo Flores Jose R.Ares Isabel J.Ferrer Abdullah M.Al-Enizi Ayman Nafady Sruthi Kuriakose Joshua O.Island Andres Castellanos-Gomez 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期201-206,共6页
We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates.The devices are based on thin films of WS_(2),Te,and BP(P-type semiconductors)and TiS_(3)and TiS_(2)(N-type semic... We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates.The devices are based on thin films of WS_(2),Te,and BP(P-type semiconductors)and TiS_(3)and TiS_(2)(N-type semiconductors),deposited by simply rubbing powder of these materials against paper.The thermoelectric properties of these semiconducting films revealed maximum Seebeck coefficients of(+1.32±0.27)mV K^(-1)and(-0.82±0.15)mV K^(-1)for WS_(2)and TiS_(3),respectively.Additionally,Peltier elements were fabricated by interconnecting the P-and N-type films with graphite electrodes.A thermopower value up to 6.11 mV K^(-1)was obtained when the Peltier element were constructed with three junctions.The findings of this work show proof-of-concept devices to illustrate the potential application of semiconducting van der Waals materials in future thermoelectric power generation as well as temperature sensing for low-cost disposable electronic devices. 展开更多
关键词 paper-based electronics Seebeck effect SEMICONDUCTORS thermoelectrics van der Waals materials
下载PDF
A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency 被引量:3
17
作者 Yahui Liu Shunda Qiao +4 位作者 Chao Fang Ying He Haiyue Sun Jian Liu Yufei Ma 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第3期26-34,共9页
A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manu... A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF. 展开更多
关键词 light-induced thermoelectric spectroscopy quartz tuning fork multi-pass cell gas sensing
下载PDF
Soft,body conformable electronics for thermoregulation enabled by kirigami 被引量:1
18
作者 Lung Chow Guangyao Zhao +17 位作者 Pengcheng Wu Xingcan Huang Jiyu Li Jian Li Wanying Wang Guihuan Guo Zhiyuan Li Jiachen Wang Jingkun Zhou Yawen Yang Yuyu Gao Binbin Zhang Qiang Zhang Dengfeng Li Ya Huang Kuanming Yao Jian Lu Xinge Yu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期453-462,共10页
The application of thermoelectric devices(TEDs)for personalized thermoregulation is attractive for saving energy while balancing the quality of life.TEDs that directly attach to human skin remarkably minimized the ene... The application of thermoelectric devices(TEDs)for personalized thermoregulation is attractive for saving energy while balancing the quality of life.TEDs that directly attach to human skin remarkably minimized the energy wasted for cooling the entire environment.However,facing the extreme dynamic geometry change and strain of human skin,conventional TEDs cannot align with the contour of our bodies for the best thermoregulation effect.Hence,we designed a kirigami-based wearable TED with excellent water vapor permeability,flexibility,and conformability.Numerical analysis and experimental results reveal that our product can withstand various types of large mechanical deformation without circuit rupture.The stated outcome and proposed facile approach not only reinforce the development of wearable TEDs but also offer an innovative opportunity for different electronics that require high conformability. 展开更多
关键词 THERMOREGULATION THERMOELECTRIC Kirigami Body conformable WEARABLE
下载PDF
多功能热电织物用于可穿戴无线传感系统 被引量:1
19
作者 Xinyang He Jiaxin Cai +6 位作者 Mingyuan Liu Xuepeng Ni Wendi Liu Hanyu Guo Jianyong Yu Liming Wang Xiaohong Qin 《Engineering》 SCIE EI CAS CSCD 2024年第4期158-167,共10页
Flexible thermoelectric materials play an important role in smart wearables,such as wearable power generation,self-powered sensing,and personal thermal management.However,with the rapid development of Internet of Thin... Flexible thermoelectric materials play an important role in smart wearables,such as wearable power generation,self-powered sensing,and personal thermal management.However,with the rapid development of Internet of Things(IoT)and artificial intelligence(AI),higher standards for comfort,multifunctionality,and sustainable operation of wearable electronics have been proposed,and it remains challenging to meet all the requirements of currently reported thermoelectric devices.Herein,we present a multifunctional,wearable,and wireless sensing system based on a thermoelectric knitted fabric with over 600 mm·s^(-1)air permeability and a stretchability of 120%.The device coupled with a wireless transmission system realizes self-powered monitoring of human respiration through an mobile phone application(APP).Furthermore,an integrated thermoelectric system was designed to combine photothermal conversion and passive radiative cooling,enabling the characteristics of being powered by solar-driven in-plane temperature differences and monitoring outdoor sunlight intensity through the APP.Additionally,we decoupled the complex signals of resistance and thermal voltage during deformation under solar irradiation based on the anisotropy of the knitted fabrics to enable the device to monitor and optimize the outdoor physical activity of the athlete via the APP.This novel thermoelectric fabricbased wearable and wireless sensing platform has promising applications in next-generation smart textiles. 展开更多
关键词 Thermoelectric fabrics Wearable device WIRELESS Multifunctional sensing system Outdoor wearable signal monitoring
下载PDF
Engineering Thermoelectric Performance of α-GeTe by Ferroelectric Distortion 被引量:1
20
作者 Yuting Fan Chenghao Xie +5 位作者 Jun Li Xiangyu Meng Jinchang Sun Jinsong Wu Xinfeng Tang Gangjian Tan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期171-179,共9页
The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural ... The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural distortion on its transport properties remains unclear.Herein,we performed a systematic study on the crystal structure and electronic band structure evolutions of Ge_(1-x)Sn_(x)Te alloys where the degree of ferroelectric distortion is continuously tuned.It is revealed that the band gap is maximized while multiple valence bands are converged at x=0.6,where the ferroelectric distortion is the least but still works.Once undistorted,the band gap is considerably reduced,and the valence bands are largely separated again.Moreover,near the ferro-to-paraelectric phase transition Curie temperature,the lattice thermal conductivity reaches its minima because of significant lattice softening enabled by ferroelectric instability.We predict a peak ZT value of 2.6 at 673 K inα-GeTe by use of proper dopants which are powerful in suppressing the excess hole concentrations but meanwhile exert little influence on the ferroelectric distortion. 展开更多
关键词 electronic band structures ferroelectric distortion lattice softening THERMOELECTRIC α-GeTe
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部