Stimuli-responsive hydrogels have become one of the most popular artificial soft materials due to their excellent adaption to complex environments. Thermoresponsive hydrogels triggered by temperature change can be eff...Stimuli-responsive hydrogels have become one of the most popular artificial soft materials due to their excellent adaption to complex environments. Thermoresponsive hydrogels triggered by temperature change can be efficiently utilized in many applications. However, these thermoresponsive hydrogels mostly cannot recover their mechanical states under large strain during the process. Herein, we utilize the heterogeneous comb-type polymer network with semicrystalline hydrophobic side chains to design self-recovery semi-crystalline hydrogels. Based on hydrophilic/hydrophobic cooperative complementary interaction and heterogeneous polymer network, hydrogels can be endowed with excellent thermosensitive properties and mechanical performance. The hydrogels exhibit high compressive strength(7.57 MPa) and compressive modulus(1.76 MPa) due to the semi-crystalline domains formed by association of the hydrophobic poly(ε-caprolactone) PCL. The melting-crystalline transition of PCL and elastic polymer network provide the hydrogels excellent thermomechanical performance and self-recovery property. Furthermore, the hydrogels exhibit shape memory behavior, which can be realized by simple process and smart surface patterning. With these excellent properties, our hydrogels can be applied in sensors, flexible devices and scaffolds for tissue engineering.展开更多
In this research,we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity.The problem aims to analyze the interconnection betw...In this research,we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity.The problem aims to analyze the interconnection between plasma and moisture diffusivity processes,as well as thermo-elastic waves.The study examines the photothermoelasticity transport process while considering the impact of moisture diffusivity.By employing Laplace’s transformation technique,we derive the governing equations of the photo-thermo-elastic medium.These equations include the equations for carrier density,elastic waves,moisture transport,heat conduction,and constitutive relationships.Mechanical stresses,thermal conditions,and plasma boundary conditions are used to calculate the fundamental physical parameters in the Laplace domain.By employing numerical techniques,the Laplace transform is inverted to get complete time-domain solutions for the primary physical domains under study.Referencemoisture,thermoelastic,and thermoelectric characteristics are employed in conjunction with a graphical analysis that takes into consideration the effects of applied forces on displacement,moisture concentration,carrier density,stress due to forces,and temperature distribution.展开更多
The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigat...The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear.展开更多
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
Oxygen-enriched top-blown smelting is a promising technology for processing waste printed circuit boards(WPCBs).The distribution behavior of valuable elements in WPCBs during smelting was investigated by varying the o...Oxygen-enriched top-blown smelting is a promising technology for processing waste printed circuit boards(WPCBs).The distribution behavior of valuable elements in WPCBs during smelting was investigated by varying the oxygen-enriched concentration,oxygen volume,CaO/SiO_(2)(mass ratio),and Fe/SiO_(2)(mass ratio).The optimal operating conditions were obtained by implementing a one-factor-at-a-time method.X-ray diffractometer,scanning electron microscopy−energy dispersive spectrometer,and inductive coupled plasma-atomic emission spectroscopy methods were utilized to detect the chemical composition,occurrence state as well as elemental contents of alloy and slag.It is found that the elements of Cu,Sn and Ni are mainly accumulated in the alloy while Fe is mainly oxidized into the slag.The direct yields of Cu,Sn and Ni are 90.18%,85.32%and 81.10%under the optimal conditions of temperature 1250℃,oxygen-enriched concentration 30%,oxygen volume 24 L,CaO/SiO_(2) mass ratio 0.55,and Fe/SiO_(2) mass ratio 1.05.The results show that the valuable metals are mainly lost in the slag through mechanical entrainment.展开更多
This study proposes a comprehensive,coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic...This study proposes a comprehensive,coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic differential operator(PDDO),eliminating the need for calibration procedures.The model employs a multi-rate explicit time integration scheme to handle varying time scales in multi-physics systems.Through simulations conducted on granite and ceramic materials,this model demonstrates its effectiveness.It successfully simulates thermal damage behavior in granite arising from incompatible mineral expansion and accurately calculates thermal crack propagation in ceramic slabs during quenching.To account for material heterogeneity,the model utilizes the Shuffle algorithm andWeibull distribution,yielding results that align with numerical simulations and experimental observations.This coupled thermomechanical model shows great promise for analyzing intricate thermomechanical phenomena in brittle materials.展开更多
As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stor...As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stored energy on localized corrosion evolution in 2A97 Al-Cu-Li alloy,cold working and artificial aging were carried out to produce 2A97 Al-Cu-Li alloys under different thermomechanical conditions.Quasi-in-situ analysis,traditional immersion test and electrochemical measurement were then conducted to examine the corrosion behavior of 2A97 alloys.It is revealed that precipitate significantly affects Cu enrichment at corrosion fronts,which determines corrosion susceptibility of alloys,whereas grain-stored energy distribution is closely associated with localized corrosion propagation.It is also indicated that quasi-in-situ analysis exhibits a consistent corrosion evolution with traditional immersion tests,which is regarded as a proper method to explore localized corrosion mechanisms by providing local microstructural information with enhanced time and spatial resolutions.展开更多
Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this w...Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this work was to contribute to the understanding of the properties of Paraberlinia bifoliolata tannin by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy MALDI-TOF/MS and Carbon 13 Nuclear Magnetic Resonance(13C NMR).The chemical composition of tannin extracted from Paraberlinia bifoliolata bark was determined,as was the mechanical strength of the resin hardened with Acacia nilotica extracts.Yield by successive water extraction was 35%.MALDI-TOF/MS analysis revealed the presence of three new compounds in this tannin,previously unknown in this family of extracts.These are 3-hydroxyproline acid,N-methyl-4-hydroxypipecolic acid and N-methyl-5-dihydroxypipecolic acid.The identification of the above molecules means that this tannin can be used for industrial applications,as a resin in the manufacture of particleboard and in the formulation of green corrosion inhibitors.This information is reinforced by 13C NMR spectrometry,which indicates the presence of several polyflavonoid units,confirming the condensed nature of the tannin.Thermomechanical analysis of the resin formed by the purified tannin of Paraberlinia bifoliolata to which a vegetal biohardener has been added provided a Modulus of Elasticity(MOE)value of 4840 MPa at 150℃,confirming its possible use as a binder resin in the manufacture of wood panels as well as for the formulation of a corrosion inhibitor.展开更多
A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress the...A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).展开更多
Some refractory linings that protect metallic vessels from the hot temperature of the products they contain are made of masonries with or without mortar.The joints play an important role,reducing the stresses in the m...Some refractory linings that protect metallic vessels from the hot temperature of the products they contain are made of masonries with or without mortar.The joints play an important role,reducing the stresses in the masonries during heating.Furthermore,the presence of these joints makes the behaviour of the masonry nonlinear and orthotropic.To perform a thermomechanical simulation using a finite element method of an industrial vessel that contains hundreds or thousands of bricks and joints,microscopic models are not suitable due to the high computational time and the management of the behaviour of the joints(opening/closing)which affects the convergence.To overcome these problems,it is proposed to replace the masonry by a homogeneous material that has a behaviour equivalent to the set of bricks and joints,using a periodic homogenization technique.Since the joints can be closed or open,the equivalent material will have a different behaviour according to the joint state.Furthermore,refractory materials have an elastic-viscoplastic behaviour at high temperatures.So,the equivalent material will have an orthotropic elastic-viscoplastic behaviour,requiring a nonlinear homogenisation technique.An overview of this approach developed at University of Orléans is presented with two industrial applications(blast-furnace and steel ladle).展开更多
The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technolog...The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines, such as a drinking bird and a low temperature Stirling engine, resulting in thermoelectric energy generation different from conventional heat engines. The current thermoelectric energy conversion with DM-EMI can be applied to wide ranges of machines and temperature differences. The mechanism of DM-EMI energy converter is categorized as the axial flux generator (AFG), which is the reason why the technology is applicable to sensitive thermoelectric conversions. On the other hand, almost all the conventional turbines use the radius flux generator to extract huge electric power, which uses the radial flux generator (RFG). The axial flux generator is helpful for a low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines. The technique of DM-EMI will contribute to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.展开更多
The traditional thermoelectric energy conversion techniques are explained in detail in terms of the axial flux electromagnetic (AFE) and the radial flux electromagnetic (RFE) inductions, and applications to heat engin...The traditional thermoelectric energy conversion techniques are explained in detail in terms of the axial flux electromagnetic (AFE) and the radial flux electromagnetic (RFE) inductions, and applications to heat engines for the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines (a drinking bird, a low temperature Stirling engine), resulting in thermoelectric energy generation different from conventional heat engines. The mechanism of thermoelectric energy conversion can be categorized as the axial flux generator (AFG) and the radial flux generator (RFG). The axial flux generator is helpful for low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators, such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines, and the device contributes to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics...A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.展开更多
Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated....Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility.展开更多
A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigat...A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigated. The results show that the refined microstructure has a variation in the distribution of grain size, shape and texture across the normal direction of the sheet. The surface layer (SL) has fine, nearly equiaxed grains with a rotated cUbeND {001 }(310) orientation, whereas the center layer (CL) has coarse, elongated grains with a portion of a fiber orientation. Increasing static recrystallized temperature results in grain growth in the full thickness, decreasing of grain aspect ratio in the center layer, texture sharpening in the surface layer, but weakening in the center layer as well as decreasing of superplastic elongation. Increasing the annealing temperature also produces an sharpening of the rotated cube {001}(310) component and a decreasing of the a fiber texture in the full thickness of the sheet. The formation mechanisms of recrystallization texture at various temperatures and layers were discussed.展开更多
The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating deg...The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating degree, pulp consistency and shearing velocity. With the increasing of pulp consistency, the apparent viscosity of pulp increased gradually. Beating degree of pulp had an effect on microstructure of pulp. The apparent viscosity of pulp declined as beating degree of pulp increased, and the apparent viscosity of pulp fell along with the shearing velocity increasing. Based on the results, the rheological models are set up. The models showed that the fluid types of the low consistency pulp could be described as pseudoplastics fluids (non-Newtonian fluids).展开更多
The sensing of hot and cold stimuli by dental neurons differs in several fundamental ways. These sensations have been characterized quantitatively through the measured time course of neural discharge signals that resu...The sensing of hot and cold stimuli by dental neurons differs in several fundamental ways. These sensations have been characterized quantitatively through the measured time course of neural discharge signals that result from hot or cold stimuli applied to the teeth of animal models. Although various hypotheses have been proposed to explain the underlying mechanism, the ability to test competing hypotheses against experimental recorded data using biophysical models has been hindered by limitations in our understanding of the specific ion channels involved in nociception of dental neurons. Here we apply recent advances in established biophysical models to test the competing hypotheses. We show that a sharp shooting pain sensation experienced shortly following cold stimulation cannot be attributed to the activation of thermosensitive ion channels, thereby falsifying the so-called neuronal hypothesis, which states that rapidly transduced sensations of coldness are related to thermosensitive ion channels. Our results support a central role of mechanosensitive ion channels and the associated hydrodynamic hypothesis. In addition to the hydrodynamic hypothesis, we also demonstrate that the long time delay of dental neuron responses after hot stimulation could be attributed to the neuronal hypothesis-that a relatively long time is required for the temperature around nociceptors to reach some threshold. The results are useful as a model of how multiphysical phenomena can be combined to provide mechanistic insight into different mechanisms underlying pain sensations.展开更多
Thermomechanical coupling of PVC sheet with defects under uniaxial loading at different rates and different sizes of microbores was studied.The local temperature field of the dynamic damage-rupture process zone at cra...Thermomechanical coupling of PVC sheet with defects under uniaxial loading at different rates and different sizes of microbores was studied.The local temperature field of the dynamic damage-rupture process zone at crack tip was surveyed with infrared thermographic sensor.Based on the irreversible thermomechanics theory,the dissipation law of deformation-heat effect during the whole process was found.Furthermore,the effect of thermoelasticity in the initial stage of extension was explained.展开更多
The effects of thermomechanical treatment on the properties and microstructure of Cu-Cr-Zr alloy and Cu-Cr-Zr-Ag alloy were investigated. Ag addition improves the mechanical properties of the alloy through solid solut...The effects of thermomechanical treatment on the properties and microstructure of Cu-Cr-Zr alloy and Cu-Cr-Zr-Ag alloy were investigated. Ag addition improves the mechanical properties of the alloy through solid solution strengthening and brings a little effect on the electrical conductivity of the alloy. A new Cu-Cr-Zr-Ag alloy was developed, which has an excellent combination of the tensile strength, elongation, and electrical conductivity reaching 476.09 MPa, 15.43% and 88.68% IACS respectively when subjected to the optimum thermomechanical treatment, i.e., solution-treating at 920℃ for 1 h, cold drawing to 96% deformation, followed by aging at 400℃ for 3 h. TEM analysis revealed two kinds of finely dispersed precipitates of Cr and CuaZr. It is very important to use the mechanisms of solid solution strengthening, work hardening effect as well as precipitate pinning effect of dislocations to improve tensile strength of the alloy without adversely affecting its electrical conductivity.展开更多
基金financially supported by the National Natural Science Foundation of China (21574004)the National Natural Science Funds for Distinguished Young Scholar (21725401)+2 种基金the Fundamental Research Funds for the Central Universitiesthe National ‘Young Thousand Talents Program’the China Postdoctoral Science Foundation (2017M620012)
文摘Stimuli-responsive hydrogels have become one of the most popular artificial soft materials due to their excellent adaption to complex environments. Thermoresponsive hydrogels triggered by temperature change can be efficiently utilized in many applications. However, these thermoresponsive hydrogels mostly cannot recover their mechanical states under large strain during the process. Herein, we utilize the heterogeneous comb-type polymer network with semicrystalline hydrophobic side chains to design self-recovery semi-crystalline hydrogels. Based on hydrophilic/hydrophobic cooperative complementary interaction and heterogeneous polymer network, hydrogels can be endowed with excellent thermosensitive properties and mechanical performance. The hydrogels exhibit high compressive strength(7.57 MPa) and compressive modulus(1.76 MPa) due to the semi-crystalline domains formed by association of the hydrophobic poly(ε-caprolactone) PCL. The melting-crystalline transition of PCL and elastic polymer network provide the hydrogels excellent thermomechanical performance and self-recovery property. Furthermore, the hydrogels exhibit shape memory behavior, which can be realized by simple process and smart surface patterning. With these excellent properties, our hydrogels can be applied in sensors, flexible devices and scaffolds for tissue engineering.
基金funded by Taif University,Taif,Saudi Arabia(TU-DSPP-2024-172).
文摘In this research,we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity.The problem aims to analyze the interconnection between plasma and moisture diffusivity processes,as well as thermo-elastic waves.The study examines the photothermoelasticity transport process while considering the impact of moisture diffusivity.By employing Laplace’s transformation technique,we derive the governing equations of the photo-thermo-elastic medium.These equations include the equations for carrier density,elastic waves,moisture transport,heat conduction,and constitutive relationships.Mechanical stresses,thermal conditions,and plasma boundary conditions are used to calculate the fundamental physical parameters in the Laplace domain.By employing numerical techniques,the Laplace transform is inverted to get complete time-domain solutions for the primary physical domains under study.Referencemoisture,thermoelastic,and thermoelectric characteristics are employed in conjunction with a graphical analysis that takes into consideration the effects of applied forces on displacement,moisture concentration,carrier density,stress due to forces,and temperature distribution.
基金supported by the Science and Technology Innovation Development Project of Yantai(No.2023ZDX016)。
文摘The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear.
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
基金supported by the National Key R&D Program of China (No.2022YFC2904201)the National Natural Science Foundation of China (Nos.51904124,52004111)+4 种基金Jiangxi Provincial Natural Science Foundation,China (Nos.20224BAB214040,20232BAB204036)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology,China (No.JXUSTQJYX2020012)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects,China (Nos.20212BCJL23052,20212BCJ23006,20212BCJ23007)Double Thousand Plan in Jiangxi Province,China (No.jxsq2019201040)Key Project of Jiangxi Provincial Natural Science Foundation,China (No.20212ACB204015)。
文摘Oxygen-enriched top-blown smelting is a promising technology for processing waste printed circuit boards(WPCBs).The distribution behavior of valuable elements in WPCBs during smelting was investigated by varying the oxygen-enriched concentration,oxygen volume,CaO/SiO_(2)(mass ratio),and Fe/SiO_(2)(mass ratio).The optimal operating conditions were obtained by implementing a one-factor-at-a-time method.X-ray diffractometer,scanning electron microscopy−energy dispersive spectrometer,and inductive coupled plasma-atomic emission spectroscopy methods were utilized to detect the chemical composition,occurrence state as well as elemental contents of alloy and slag.It is found that the elements of Cu,Sn and Ni are mainly accumulated in the alloy while Fe is mainly oxidized into the slag.The direct yields of Cu,Sn and Ni are 90.18%,85.32%and 81.10%under the optimal conditions of temperature 1250℃,oxygen-enriched concentration 30%,oxygen volume 24 L,CaO/SiO_(2) mass ratio 0.55,and Fe/SiO_(2) mass ratio 1.05.The results show that the valuable metals are mainly lost in the slag through mechanical entrainment.
基金supported by the University Natural Science Foundation of Jiangsu Province(Grant No.23KJB130004)the National Natural Science Foundation of China(Grant Nos.11932006,U1934206,12172121,12002118).
文摘This study proposes a comprehensive,coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic differential operator(PDDO),eliminating the need for calibration procedures.The model employs a multi-rate explicit time integration scheme to handle varying time scales in multi-physics systems.Through simulations conducted on granite and ceramic materials,this model demonstrates its effectiveness.It successfully simulates thermal damage behavior in granite arising from incompatible mineral expansion and accurately calculates thermal crack propagation in ceramic slabs during quenching.To account for material heterogeneity,the model utilizes the Shuffle algorithm andWeibull distribution,yielding results that align with numerical simulations and experimental observations.This coupled thermomechanical model shows great promise for analyzing intricate thermomechanical phenomena in brittle materials.
基金supports from the National Natural Science Foundation of China(Nos.52371065,52001128)the Hubei Provincial Natural Science Foundation of China(No.2023AFB637)。
文摘As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stored energy on localized corrosion evolution in 2A97 Al-Cu-Li alloy,cold working and artificial aging were carried out to produce 2A97 Al-Cu-Li alloys under different thermomechanical conditions.Quasi-in-situ analysis,traditional immersion test and electrochemical measurement were then conducted to examine the corrosion behavior of 2A97 alloys.It is revealed that precipitate significantly affects Cu enrichment at corrosion fronts,which determines corrosion susceptibility of alloys,whereas grain-stored energy distribution is closely associated with localized corrosion propagation.It is also indicated that quasi-in-situ analysis exhibits a consistent corrosion evolution with traditional immersion tests,which is regarded as a proper method to explore localized corrosion mechanisms by providing local microstructural information with enhanced time and spatial resolutions.
基金supported by the Institut de la Francophonie pour le Developpement Durable(IFDD/Canada)/Projet de Deploiement des Technologies et Innovations Environnementales(PDTIE)funded by Organisation Internationale de la Francophonie(OIF)the Organisation of African,Caribbean and Pacific States and the European Union(EU)(FED/220/421-370)the Local Materials Promotion Authority(MIPROMALO)of the Ministry of Scientific Research and Innovation of Cameroon who made it possible for this scientific work to be carried out.
文摘Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this work was to contribute to the understanding of the properties of Paraberlinia bifoliolata tannin by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy MALDI-TOF/MS and Carbon 13 Nuclear Magnetic Resonance(13C NMR).The chemical composition of tannin extracted from Paraberlinia bifoliolata bark was determined,as was the mechanical strength of the resin hardened with Acacia nilotica extracts.Yield by successive water extraction was 35%.MALDI-TOF/MS analysis revealed the presence of three new compounds in this tannin,previously unknown in this family of extracts.These are 3-hydroxyproline acid,N-methyl-4-hydroxypipecolic acid and N-methyl-5-dihydroxypipecolic acid.The identification of the above molecules means that this tannin can be used for industrial applications,as a resin in the manufacture of particleboard and in the formulation of green corrosion inhibitors.This information is reinforced by 13C NMR spectrometry,which indicates the presence of several polyflavonoid units,confirming the condensed nature of the tannin.Thermomechanical analysis of the resin formed by the purified tannin of Paraberlinia bifoliolata to which a vegetal biohardener has been added provided a Modulus of Elasticity(MOE)value of 4840 MPa at 150℃,confirming its possible use as a binder resin in the manufacture of wood panels as well as for the formulation of a corrosion inhibitor.
基金the National Natural Science Foundation of China(Nos.11602204 and 12102373)the Fundamental Research Funds for the Central Universities of China(Nos.2682022ZTPY081 and 2682022CX056)the Natural Science Foundation of Sichuan Province of China(Nos.2023NSFSC0849,2023NSFSC1300,2022NSFSC1938,and 2022NSFSC2003)。
文摘A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).
基金the PhD students(M.Ali,J.Brulin,M.Landreau,T.M.H Nguyen)who have participated to this study,the different compagnies(CPM,RHI-Magnesita,Saint-Gobain,and Tata Steel),the European Commission(ATHOR project,764987 Grant)the Federation for International Refractory Research and Education which have funded it.
文摘Some refractory linings that protect metallic vessels from the hot temperature of the products they contain are made of masonries with or without mortar.The joints play an important role,reducing the stresses in the masonries during heating.Furthermore,the presence of these joints makes the behaviour of the masonry nonlinear and orthotropic.To perform a thermomechanical simulation using a finite element method of an industrial vessel that contains hundreds or thousands of bricks and joints,microscopic models are not suitable due to the high computational time and the management of the behaviour of the joints(opening/closing)which affects the convergence.To overcome these problems,it is proposed to replace the masonry by a homogeneous material that has a behaviour equivalent to the set of bricks and joints,using a periodic homogenization technique.Since the joints can be closed or open,the equivalent material will have a different behaviour according to the joint state.Furthermore,refractory materials have an elastic-viscoplastic behaviour at high temperatures.So,the equivalent material will have an orthotropic elastic-viscoplastic behaviour,requiring a nonlinear homogenisation technique.An overview of this approach developed at University of Orléans is presented with two industrial applications(blast-furnace and steel ladle).
文摘The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines, such as a drinking bird and a low temperature Stirling engine, resulting in thermoelectric energy generation different from conventional heat engines. The current thermoelectric energy conversion with DM-EMI can be applied to wide ranges of machines and temperature differences. The mechanism of DM-EMI energy converter is categorized as the axial flux generator (AFG), which is the reason why the technology is applicable to sensitive thermoelectric conversions. On the other hand, almost all the conventional turbines use the radius flux generator to extract huge electric power, which uses the radial flux generator (RFG). The axial flux generator is helpful for a low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines. The technique of DM-EMI will contribute to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.
文摘The traditional thermoelectric energy conversion techniques are explained in detail in terms of the axial flux electromagnetic (AFE) and the radial flux electromagnetic (RFE) inductions, and applications to heat engines for the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines (a drinking bird, a low temperature Stirling engine), resulting in thermoelectric energy generation different from conventional heat engines. The mechanism of thermoelectric energy conversion can be categorized as the axial flux generator (AFG) and the radial flux generator (RFG). The axial flux generator is helpful for low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators, such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines, and the device contributes to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
文摘A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.
基金Project(51101119)supported by the National Natural Science Foundation of China
文摘Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility.
基金Project(51205419)supported by the National Natural Science Foundation of China
文摘A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigated. The results show that the refined microstructure has a variation in the distribution of grain size, shape and texture across the normal direction of the sheet. The surface layer (SL) has fine, nearly equiaxed grains with a rotated cUbeND {001 }(310) orientation, whereas the center layer (CL) has coarse, elongated grains with a portion of a fiber orientation. Increasing static recrystallized temperature results in grain growth in the full thickness, decreasing of grain aspect ratio in the center layer, texture sharpening in the surface layer, but weakening in the center layer as well as decreasing of superplastic elongation. Increasing the annealing temperature also produces an sharpening of the rotated cube {001}(310) component and a decreasing of the a fiber texture in the full thickness of the sheet. The formation mechanisms of recrystallization texture at various temperatures and layers were discussed.
基金This study was sponsored by the Research Funding for Outstanding Young University Faculty of China Ministry of Education (No. 2001-39), Fujian Provincial Innovation Fundation for Young Science and Technology Talents (No. 2004J012), and the National Natural Science Funda-tion of China (No. 30571461)
文摘The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating degree, pulp consistency and shearing velocity. With the increasing of pulp consistency, the apparent viscosity of pulp increased gradually. Beating degree of pulp had an effect on microstructure of pulp. The apparent viscosity of pulp declined as beating degree of pulp increased, and the apparent viscosity of pulp fell along with the shearing velocity increasing. Based on the results, the rheological models are set up. The models showed that the fluid types of the low consistency pulp could be described as pseudoplastics fluids (non-Newtonian fluids).
基金supported by the National Natural Science Foundation of China (Grants 11372243, 11522219, 11532009, and 11402192)the Fundamental Research Funds for the Central Universities (Grants 2016qngz03, 2015qngz09)the Openning Project of Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research,College of Stomatology, Xi’an Jiaotong University (Grant 2016LHM-KFKT007)
文摘The sensing of hot and cold stimuli by dental neurons differs in several fundamental ways. These sensations have been characterized quantitatively through the measured time course of neural discharge signals that result from hot or cold stimuli applied to the teeth of animal models. Although various hypotheses have been proposed to explain the underlying mechanism, the ability to test competing hypotheses against experimental recorded data using biophysical models has been hindered by limitations in our understanding of the specific ion channels involved in nociception of dental neurons. Here we apply recent advances in established biophysical models to test the competing hypotheses. We show that a sharp shooting pain sensation experienced shortly following cold stimulation cannot be attributed to the activation of thermosensitive ion channels, thereby falsifying the so-called neuronal hypothesis, which states that rapidly transduced sensations of coldness are related to thermosensitive ion channels. Our results support a central role of mechanosensitive ion channels and the associated hydrodynamic hypothesis. In addition to the hydrodynamic hypothesis, we also demonstrate that the long time delay of dental neuron responses after hot stimulation could be attributed to the neuronal hypothesis-that a relatively long time is required for the temperature around nociceptors to reach some threshold. The results are useful as a model of how multiphysical phenomena can be combined to provide mechanistic insight into different mechanisms underlying pain sensations.
基金Project(10672191) supported by the National Natural Science Foundation of ChinaProject(06JJ2059)supported by the Provincial Natural Science Foundation of Hunan,ChinaProject(KF0607) supported by the Key Laboratory of Low Dimensional Materials and Application Technology (Xiangtan University),Ministry of Education,China
文摘Thermomechanical coupling of PVC sheet with defects under uniaxial loading at different rates and different sizes of microbores was studied.The local temperature field of the dynamic damage-rupture process zone at crack tip was surveyed with infrared thermographic sensor.Based on the irreversible thermomechanics theory,the dissipation law of deformation-heat effect during the whole process was found.Furthermore,the effect of thermoelasticity in the initial stage of extension was explained.
基金financially supported by the National High-Tech Research and Development Program of China (No.2006AA03Z522)the National Natural Science Foundation of China (No.50704006)the Technology De-velopment Fund of CHALCO (No.CHINACO-2009-KJ-02)
文摘The effects of thermomechanical treatment on the properties and microstructure of Cu-Cr-Zr alloy and Cu-Cr-Zr-Ag alloy were investigated. Ag addition improves the mechanical properties of the alloy through solid solution strengthening and brings a little effect on the electrical conductivity of the alloy. A new Cu-Cr-Zr-Ag alloy was developed, which has an excellent combination of the tensile strength, elongation, and electrical conductivity reaching 476.09 MPa, 15.43% and 88.68% IACS respectively when subjected to the optimum thermomechanical treatment, i.e., solution-treating at 920℃ for 1 h, cold drawing to 96% deformation, followed by aging at 400℃ for 3 h. TEM analysis revealed two kinds of finely dispersed precipitates of Cr and CuaZr. It is very important to use the mechanisms of solid solution strengthening, work hardening effect as well as precipitate pinning effect of dislocations to improve tensile strength of the alloy without adversely affecting its electrical conductivity.