The results of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistor) are reported. The formation of diffusion zones in the softened glass during firing...The results of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistor) are reported. The formation of diffusion zones in the softened glass during firing process of the mixture of the glass and the dopant powders is considered. As the result the doping glass becomes conductive. These diffusion zones have higher conductivity and act as percolation levels for the free charge carriers. The effect of tem-perature and duration of firing process on the conductivity of doped glass is considered. Experimental results are in a good agreement with the model.展开更多
This article is the final part of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistors). In the first part [1], the formation of percolation levels du...This article is the final part of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistors). In the first part [1], the formation of percolation levels due to diffusion of dopant atoms into the glass has been considered. The diffusion mechanism allowed us to explain shifting of the percolation threshold towards to lower value and the effect of firing conditions as well as the components composition on the electrical conduction of the doped glass. The coexistence of thermal activation and localization of free charge carriers as the result of nanocrystalline structure of the glass was the subject of the second part [2]. Because of it, the resistivity of the doped silicate glass is proportional to exp (–aT–ζ) at low temperatures (T 50 K), 0.4 ζ < 0.8. Structural transitions of nanocrystals take place at high temperatures (T > 800 K) and the conductivity of the doped silicate glass decreases sharply. We consider the origin of the minimum in the temperature dependence of resistivity of the doped silicate glass here. It is shown that the minimum arises from merge of impurity band into the valence band of glass at temperature high enough, so thermal activation of charge carriers as well as its hopping are failed, and scattering of free charge carriers become predominant factor in the temperature dependence of the resistivity.展开更多
Results of investigation of X-ray diffraction, infrared and optical spectra of powders of the ruthenium dioxide, lead-silicate glass as well as their mixture before and after sintering are reported. Sintering conditio...Results of investigation of X-ray diffraction, infrared and optical spectra of powders of the ruthenium dioxide, lead-silicate glass as well as their mixture before and after sintering are reported. Sintering conditions typical for thick film resistors were used. Intensity of main lines of RuO2 in X-ray diffraction patterns of sintered mixtures decreases and they slightly shift towards small angles. No new reflexes appear in these patterns. Absorbance of RuO2 in the range of 2.5-100 μm is proportional to and featureless. Infrared spectrum of lead-silicate glass has absorption bands of [SiO4]4- tetrahedra and Pb-O bonds only. Optical spectrum of RuO2 has wide absorption bands at 950 and 370 nm. Spectra of the mixture of RuO2 and glass powders before and after sintering are different indicating that there is interaction between them during the sintering process. Concentration of free charge carriers estimated from the optical spectra is about 1021 cm-3.展开更多
The preparation of lead-free thick-film resistors are reported:using RuO 2 and ruthenates as conductive particles,glass powders composed of B 2 O 3,SiO 2,CaO and Al2 O 3 as insulating phase,adding organic matter which...The preparation of lead-free thick-film resistors are reported:using RuO 2 and ruthenates as conductive particles,glass powders composed of B 2 O 3,SiO 2,CaO and Al2 O 3 as insulating phase,adding organic matter which mainly consists of ethyl cellulose and terpineol to form printable pastes.Resistors were fabricated and sintered by conventional screen-printing on 96%Al 2 O 3 substrates,and then sintering in a belt furnace.X-ray diffraction(XRD) and electron scanning microscopy(SEM) have been used to characterize the conductive particles.The resistors exhibit good refiring stability and low temperature coefficient of resistance.Sheet resistance spans from about 80Ω/□ to 600Ω/□.The resistors prepared are qualified for common use.展开更多
文摘The results of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistor) are reported. The formation of diffusion zones in the softened glass during firing process of the mixture of the glass and the dopant powders is considered. As the result the doping glass becomes conductive. These diffusion zones have higher conductivity and act as percolation levels for the free charge carriers. The effect of tem-perature and duration of firing process on the conductivity of doped glass is considered. Experimental results are in a good agreement with the model.
文摘This article is the final part of the investigation of conduction mechanism of silicate glass doped by oxide compounds of ruthenium (thick film resistors). In the first part [1], the formation of percolation levels due to diffusion of dopant atoms into the glass has been considered. The diffusion mechanism allowed us to explain shifting of the percolation threshold towards to lower value and the effect of firing conditions as well as the components composition on the electrical conduction of the doped glass. The coexistence of thermal activation and localization of free charge carriers as the result of nanocrystalline structure of the glass was the subject of the second part [2]. Because of it, the resistivity of the doped silicate glass is proportional to exp (–aT–ζ) at low temperatures (T 50 K), 0.4 ζ < 0.8. Structural transitions of nanocrystals take place at high temperatures (T > 800 K) and the conductivity of the doped silicate glass decreases sharply. We consider the origin of the minimum in the temperature dependence of resistivity of the doped silicate glass here. It is shown that the minimum arises from merge of impurity band into the valence band of glass at temperature high enough, so thermal activation of charge carriers as well as its hopping are failed, and scattering of free charge carriers become predominant factor in the temperature dependence of the resistivity.
文摘Results of investigation of X-ray diffraction, infrared and optical spectra of powders of the ruthenium dioxide, lead-silicate glass as well as their mixture before and after sintering are reported. Sintering conditions typical for thick film resistors were used. Intensity of main lines of RuO2 in X-ray diffraction patterns of sintered mixtures decreases and they slightly shift towards small angles. No new reflexes appear in these patterns. Absorbance of RuO2 in the range of 2.5-100 μm is proportional to and featureless. Infrared spectrum of lead-silicate glass has absorption bands of [SiO4]4- tetrahedra and Pb-O bonds only. Optical spectrum of RuO2 has wide absorption bands at 950 and 370 nm. Spectra of the mixture of RuO2 and glass powders before and after sintering are different indicating that there is interaction between them during the sintering process. Concentration of free charge carriers estimated from the optical spectra is about 1021 cm-3.
文摘The preparation of lead-free thick-film resistors are reported:using RuO 2 and ruthenates as conductive particles,glass powders composed of B 2 O 3,SiO 2,CaO and Al2 O 3 as insulating phase,adding organic matter which mainly consists of ethyl cellulose and terpineol to form printable pastes.Resistors were fabricated and sintered by conventional screen-printing on 96%Al 2 O 3 substrates,and then sintering in a belt furnace.X-ray diffraction(XRD) and electron scanning microscopy(SEM) have been used to characterize the conductive particles.The resistors exhibit good refiring stability and low temperature coefficient of resistance.Sheet resistance spans from about 80Ω/□ to 600Ω/□.The resistors prepared are qualified for common use.