Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(...Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(RIL)population derived from a cross between W7268 and Chuanyu 12(CY12)was employed to detect quantitative trait loci(QTLs)for thousand-grain weight(TGW),grain length(GL),grain width(GW),and the ratio of grain length to width(GLW)in six environments.Seven major QTLs,QGl.cib-2D,QGw.cib-2D,QGw.cib-3B,QGw.cib-4B.1,QGlw.cib-2D.1,QTgw.cib-2D.1 and QTgw.cib-3B.1,were consistently identified in at least four environments and the best linear unbiased estimation(BLUE)datasets,and they explained 2.61 to 34.85%of the phenotypic variance.Significant interactions were detected between the two major TGW QTLs and three major GW loci.In addition,QTgw.cib-3B.1 and QGw.cib-3B were co-located,and the improved TGW at this locus was contributed by GW.Unlike other loci,QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike(GNS).They were further validated in advanced lines using Kompetitive Allele Specific PCR(KASP)markers,and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.According to gene annotation,spatial expression patterns,ortholog analysis and sequence variation,the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.Collectively,the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.展开更多
为了进一步挖掘小麦籽粒相关性状的主效QTL位点,探索籽粒性状之间的遗传关系,利用籽粒性状差异较大的小麦品种安农859和武农988构建的124份DH群体为研究材料,分别测定2 a 7个环境下的粒长、粒宽及千粒质量表型值,开展籽粒性状多元回归分...为了进一步挖掘小麦籽粒相关性状的主效QTL位点,探索籽粒性状之间的遗传关系,利用籽粒性状差异较大的小麦品种安农859和武农988构建的124份DH群体为研究材料,分别测定2 a 7个环境下的粒长、粒宽及千粒质量表型值,开展籽粒性状多元回归分析,并基于DH群体的55K芯片数据进行籽粒相关性状QTL检测。结果表明,多元回归分析中,粒宽对千粒质量的贡献最大。通过完备区间作图对籽粒性状进行QTL定位,除6D和7B染色体外,其他19条染色体上共检测到69个有关籽粒性状的QTL,包括24个千粒质量QTL、28个粒长QTL、17个粒宽QTL,单个QTL的表型解释率为6.87%~27.74%。其中,7A染色体上粒长相关的Qgl.ahau-7A.1在7个环境及BLUP下均被检测到,表型解释率为9.48%~22.26%,加性效应为0.11~0.21 mm,物理区间4.91 Mb(AX-110430243~AX-110442528),可能为新的主效QTL。因此,Qgl.ahau-7A.1位点可作为后续精细定位和分子标记辅助育种重点关注的区域。展开更多
Thousand-grain weight (TGWT) is an important factor affecting grain yield as well as grain quality in rice. A quantitative trait locus (QTL) qTGWT1-1 for TGWT was detected previously near DNA marker RG532 on the short...Thousand-grain weight (TGWT) is an important factor affecting grain yield as well as grain quality in rice. A quantitative trait locus (QTL) qTGWT1-1 for TGWT was detected previously near DNA marker RG532 on the short arm of chromosome 1 in a recombinant inbred line (RIL) population derived from the indica-indica rice cross Zhengshan97B (ZS97B)/Milyang46 (MY46). In this study, two residual het-erozygous lines (RHLs), Ch1 and Ch2, derived from the ZS97B/MY46 RIL F7 population, were used to develop two F6 populations, RIL-1 and RIL-2. The genome of Ch1 and Ch2 contains a heterozygous region flanked by RM1―RM3746 and RM151―RM243 on the short arm of chromosome 1, respectively, but is homozygous in other regions. Two tightly linked QTLs, Gw1-1 and Gw1-2, with the same additive direction and similar effect on TGWT, were detected in the region of QTL qTGWT1-1 in population RIL-2. No QTL was detected in the population RIL-1. Four individual RHLs from the population RIL-2 carrying heterozygous segments flanked by RM151―RM10404, RM10381―RM243, RM10435―RM259 and RM10398―RM5359, respectively, were chosen to develop four F2 populations. Ten maternal homozy-gotes and 10 paternal homozygotes were selected from each of the four F2 populations derived from the four RHLs. The four sets of near isogenic lines (NILs) were grown for phenotyping of TGWT and delimitation of Gw1-1 and Gw1-2. Results showed that Gw1-1 and Gw1-2 were located in the intervals RM10376―RM10398 and RM10404―RM1344 which cover 392.9 and 308.5 kb regions, respectively. The enhancing alleles were from ZS97B at both loci, and no significant interactions were detected. Genetic dissection of Gw1-1 and Gw1-2 has laid a foundation for their cloning and molecular breeding of grain yield and quality in rice.展开更多
Grain size and weight are key components of wheat yield.Exploitation of major underlying quantitative trait loci(QTL)can improve yield potential in wheat breeding.A recombinant inbred line(RIL)population was construct...Grain size and weight are key components of wheat yield.Exploitation of major underlying quantitative trait loci(QTL)can improve yield potential in wheat breeding.A recombinant inbred line(RIL)population was constructed to detect QTL for thousand-grain weight(TGW),grain length(GL)and grain width(GW)across eight environments.Genomic regions associated with grain size and grain weight were identified on chromosomes 4A and 6A using bulked segregant exome sequencing(BSE-Seq)analysis.After constructing genetic maps,six major QTL detected in at least four individual environments and in best linear unbiased estimator(BLUE)datasets,explained 7.50%-23.45%of the phenotypic variation.Except for QGl.cib-4A,the other five QTL were co-located in two regions,namely QTgw/Gw.cib-4A and QTgw/Gw/Gl.cib-6A.Interactions of these QTL were analyzed.Unlike QTgw/Gw/Gl.cib-6A,QTgw/Gw.cib-4A and QGl.cib-4A had no effect on grain number per spike(GNS).The QTL were validated in a second cross using Kompetitive Allele Specific PCR(KASP)markers.Since QTgw/Gw.cib-4A was probably a novel locus,it and the KASP markers reported here can be used in wheat breeding.TraesCS4A03G0191200 was predicted to be potential candidate gene for QTgw/Gw.cib-4A based on the sequence differences,spatiotemporal expression patterns,gene annotation and haplotype analysis.Our findings will be useful for fine mapping and for marker-assisted selection in wheat grain yield improvement.展开更多
Agropyron cristatum(2n=4x=28,PPPP),which harbours many high-yield and disease-resistance genes,is a promising donor for wheat improvement.Narrow genetic diversity and the trade-off between grain weight and grain numbe...Agropyron cristatum(2n=4x=28,PPPP),which harbours many high-yield and disease-resistance genes,is a promising donor for wheat improvement.Narrow genetic diversity and the trade-off between grain weight and grain number have become bottlenecks for increasing grain yield in wheat.In this study,a novel translocation line,WAT650l,was derived from the chromosome 6P addition line 4844–12,which can simultaneously increase both grain number per spike(GNS)and thousand-grain weight(TGW).Cytological analysis and molecular marker analysis revealed that WAT650l was a 5BL.5BS-6PL(bin 12–17)translocation line.Assessment of agronomic traits and analysis of the BC4F2 and BC5F2 populations suggested that the 6PL terminal chromosome segment in WAT650l resulted in increased grain number per spike(average increased by 14.07 grains),thousand-grain weight(average increased by 4.31 g),flag leaf length,plant height,spikelet number per spike and kernel number per spikelet during the two growing seasons of 2020–2021 and 2021–2022.Additionally,the increased GNS locus and high-TGW locus of WAT650l were mapped to the bins 16–17 and 12–13,respectively,on chromosome 6PL by genetic population analysis of three translocation lines.In summary,we provide a valuable germplasm resource for broadening the genetic base of wheat and overcoming the negative relationship between GNS and TGW in wheat breeding.展开更多
为明确不同品种(系)彩色小麦主要农艺性状的特征及其与籽粒产量的相关关系,筛选出适宜鲁东地区栽培的彩色小麦品种。于2020-2022年2个冬小麦生长季,选用4个紫色小麦品种(系)青研紫麦1号(QYZ-1)、QYZ-2、山农紫麦1号(SNZM1)和农大3753(ND...为明确不同品种(系)彩色小麦主要农艺性状的特征及其与籽粒产量的相关关系,筛选出适宜鲁东地区栽培的彩色小麦品种。于2020-2022年2个冬小麦生长季,选用4个紫色小麦品种(系)青研紫麦1号(QYZ-1)、QYZ-2、山农紫麦1号(SNZM1)和农大3753(ND3753),2个蓝色小麦品系20064和20072以及普通白粒小麦品种济麦22(JM22,对照品种)为试验材料,系统研究了不同品种(系)彩色小麦的旗叶SPAD值、叶面积指数、干物质积累与转运、产量及其构成因素等方面的差异,和各农艺性状的稳定性以及产量可持续性。结果表明,各彩色小麦品种产量、千粒质量、开花期叶面积指数、花后SPAD值、开花期干物质积累量、成熟期干物质积累量、花后干物质积累量及收获指数均低于普通白粒小麦品种济麦22。各彩色小麦品种(系)间比较,紫色小麦QYZ-1产量显著高于其他彩色小麦品种(系),单位面积粒数与QYZ-2无显著差异,但其千粒质量显著高于QYZ-2;紫色小麦QYZ-1开花期上三叶叶面积指数显著高于蓝色小麦品系及ND3753,紫色小麦QYZ-1花后旗叶SPAD、成熟期干物质积累量、花后干物质积累量、花前干物质转运量和收获指数均高于其余彩色小麦品种(系);与其他品种(系)比较,JM22和QYZ-1各农艺性状的变异系数(CV)均较小,彩色小麦间比较,QYZ-1的产量均值和产量可持续性指数(SYI)均较高。另外,相关分析表明,产量分别与开花期干物质积累量、成熟期干物质积累量、花后干物质积累量、花前干物质转运量、收获指数、旗叶花后28 d SPAD值、开花期全绿叶叶面积指数和千粒质量呈极显著的正相关关系。综合2 a的结果,表明QYZ-1具有适宜的叶面积指数,并维持了较高的花后旗叶SPAD值,花后旗叶的衰老较慢,开花-成熟时间较长,协同提高了花后干物质积累量和花前干物质转运量、成熟期干物质积累量和收获指数以及单位面积粒数和千粒质量,表现出较高的产量。综上所述,青研紫麦1号产量稳定且可持续性较好,是适宜鲁东地区栽培的彩色小麦品种。展开更多
在偏迟播栽培条件下,对镇麦10号等3个品种,按穗数高、中、低3个类型在小局域地段进行随机取样,调查穗数、株高、产量、每穗粒数、千粒重等性状。结果表明,3个品种都表现穗型偏小、每穗粒数较少。穗数变化对每穗粒数、千粒重变化影响相...在偏迟播栽培条件下,对镇麦10号等3个品种,按穗数高、中、低3个类型在小局域地段进行随机取样,调查穗数、株高、产量、每穗粒数、千粒重等性状。结果表明,3个品种都表现穗型偏小、每穗粒数较少。穗数变化对每穗粒数、千粒重变化影响相对较小。穗数与产量呈极显著正相关,在调查区间范围内,3个品种的穗数与产量符合直线回归关系。穗数与每穗粒数均呈负相关,中镇麦10号、镇麦15相关达极显著水平,扬麦16相关未达显著水平。穗数与株高呈正相关,3个品种都达极显著水平,其中扬麦16穗数达37.34万/667 m 2及以上时发生斜倒。根据结果本文提出了偏迟播小麦以足穗高产的栽培途径及必须重视的三项栽培措施。展开更多
基金supported by the Major Program of National Agricultural Science and Technology of China(NK20220607)the West Light Foundation of the Chinese Academy of Sciences(2022XBZG_XBQNXZ_A_001)the Sichuan Science and Technology Program,China(2022ZDZX0014)。
文摘Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(RIL)population derived from a cross between W7268 and Chuanyu 12(CY12)was employed to detect quantitative trait loci(QTLs)for thousand-grain weight(TGW),grain length(GL),grain width(GW),and the ratio of grain length to width(GLW)in six environments.Seven major QTLs,QGl.cib-2D,QGw.cib-2D,QGw.cib-3B,QGw.cib-4B.1,QGlw.cib-2D.1,QTgw.cib-2D.1 and QTgw.cib-3B.1,were consistently identified in at least four environments and the best linear unbiased estimation(BLUE)datasets,and they explained 2.61 to 34.85%of the phenotypic variance.Significant interactions were detected between the two major TGW QTLs and three major GW loci.In addition,QTgw.cib-3B.1 and QGw.cib-3B were co-located,and the improved TGW at this locus was contributed by GW.Unlike other loci,QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike(GNS).They were further validated in advanced lines using Kompetitive Allele Specific PCR(KASP)markers,and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.According to gene annotation,spatial expression patterns,ortholog analysis and sequence variation,the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.Collectively,the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.
文摘为了进一步挖掘小麦籽粒相关性状的主效QTL位点,探索籽粒性状之间的遗传关系,利用籽粒性状差异较大的小麦品种安农859和武农988构建的124份DH群体为研究材料,分别测定2 a 7个环境下的粒长、粒宽及千粒质量表型值,开展籽粒性状多元回归分析,并基于DH群体的55K芯片数据进行籽粒相关性状QTL检测。结果表明,多元回归分析中,粒宽对千粒质量的贡献最大。通过完备区间作图对籽粒性状进行QTL定位,除6D和7B染色体外,其他19条染色体上共检测到69个有关籽粒性状的QTL,包括24个千粒质量QTL、28个粒长QTL、17个粒宽QTL,单个QTL的表型解释率为6.87%~27.74%。其中,7A染色体上粒长相关的Qgl.ahau-7A.1在7个环境及BLUP下均被检测到,表型解释率为9.48%~22.26%,加性效应为0.11~0.21 mm,物理区间4.91 Mb(AX-110430243~AX-110442528),可能为新的主效QTL。因此,Qgl.ahau-7A.1位点可作为后续精细定位和分子标记辅助育种重点关注的区域。
基金the Natural Science Foundation of Zhejiang Province (Grant No. R306285)Rice Breeding Project of Zhejiang Province (Gant No. 2007C12904) National Natural Science Foundation of China (Grant No. 30623006)
文摘Thousand-grain weight (TGWT) is an important factor affecting grain yield as well as grain quality in rice. A quantitative trait locus (QTL) qTGWT1-1 for TGWT was detected previously near DNA marker RG532 on the short arm of chromosome 1 in a recombinant inbred line (RIL) population derived from the indica-indica rice cross Zhengshan97B (ZS97B)/Milyang46 (MY46). In this study, two residual het-erozygous lines (RHLs), Ch1 and Ch2, derived from the ZS97B/MY46 RIL F7 population, were used to develop two F6 populations, RIL-1 and RIL-2. The genome of Ch1 and Ch2 contains a heterozygous region flanked by RM1―RM3746 and RM151―RM243 on the short arm of chromosome 1, respectively, but is homozygous in other regions. Two tightly linked QTLs, Gw1-1 and Gw1-2, with the same additive direction and similar effect on TGWT, were detected in the region of QTL qTGWT1-1 in population RIL-2. No QTL was detected in the population RIL-1. Four individual RHLs from the population RIL-2 carrying heterozygous segments flanked by RM151―RM10404, RM10381―RM243, RM10435―RM259 and RM10398―RM5359, respectively, were chosen to develop four F2 populations. Ten maternal homozy-gotes and 10 paternal homozygotes were selected from each of the four F2 populations derived from the four RHLs. The four sets of near isogenic lines (NILs) were grown for phenotyping of TGWT and delimitation of Gw1-1 and Gw1-2. Results showed that Gw1-1 and Gw1-2 were located in the intervals RM10376―RM10398 and RM10404―RM1344 which cover 392.9 and 308.5 kb regions, respectively. The enhancing alleles were from ZS97B at both loci, and no significant interactions were detected. Genetic dissection of Gw1-1 and Gw1-2 has laid a foundation for their cloning and molecular breeding of grain yield and quality in rice.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA24030402)Sichuan Science and Technology Program.
文摘Grain size and weight are key components of wheat yield.Exploitation of major underlying quantitative trait loci(QTL)can improve yield potential in wheat breeding.A recombinant inbred line(RIL)population was constructed to detect QTL for thousand-grain weight(TGW),grain length(GL)and grain width(GW)across eight environments.Genomic regions associated with grain size and grain weight were identified on chromosomes 4A and 6A using bulked segregant exome sequencing(BSE-Seq)analysis.After constructing genetic maps,six major QTL detected in at least four individual environments and in best linear unbiased estimator(BLUE)datasets,explained 7.50%-23.45%of the phenotypic variation.Except for QGl.cib-4A,the other five QTL were co-located in two regions,namely QTgw/Gw.cib-4A and QTgw/Gw/Gl.cib-6A.Interactions of these QTL were analyzed.Unlike QTgw/Gw/Gl.cib-6A,QTgw/Gw.cib-4A and QGl.cib-4A had no effect on grain number per spike(GNS).The QTL were validated in a second cross using Kompetitive Allele Specific PCR(KASP)markers.Since QTgw/Gw.cib-4A was probably a novel locus,it and the KASP markers reported here can be used in wheat breeding.TraesCS4A03G0191200 was predicted to be potential candidate gene for QTgw/Gw.cib-4A based on the sequence differences,spatiotemporal expression patterns,gene annotation and haplotype analysis.Our findings will be useful for fine mapping and for marker-assisted selection in wheat grain yield improvement.
基金financially supported by the National Natural Science Foundation of China(32171961)the Agricultural Science and Technology Innovation Program of CAAS(CAASASTIP-2021-ICS)。
文摘Agropyron cristatum(2n=4x=28,PPPP),which harbours many high-yield and disease-resistance genes,is a promising donor for wheat improvement.Narrow genetic diversity and the trade-off between grain weight and grain number have become bottlenecks for increasing grain yield in wheat.In this study,a novel translocation line,WAT650l,was derived from the chromosome 6P addition line 4844–12,which can simultaneously increase both grain number per spike(GNS)and thousand-grain weight(TGW).Cytological analysis and molecular marker analysis revealed that WAT650l was a 5BL.5BS-6PL(bin 12–17)translocation line.Assessment of agronomic traits and analysis of the BC4F2 and BC5F2 populations suggested that the 6PL terminal chromosome segment in WAT650l resulted in increased grain number per spike(average increased by 14.07 grains),thousand-grain weight(average increased by 4.31 g),flag leaf length,plant height,spikelet number per spike and kernel number per spikelet during the two growing seasons of 2020–2021 and 2021–2022.Additionally,the increased GNS locus and high-TGW locus of WAT650l were mapped to the bins 16–17 and 12–13,respectively,on chromosome 6PL by genetic population analysis of three translocation lines.In summary,we provide a valuable germplasm resource for broadening the genetic base of wheat and overcoming the negative relationship between GNS and TGW in wheat breeding.
文摘为明确不同品种(系)彩色小麦主要农艺性状的特征及其与籽粒产量的相关关系,筛选出适宜鲁东地区栽培的彩色小麦品种。于2020-2022年2个冬小麦生长季,选用4个紫色小麦品种(系)青研紫麦1号(QYZ-1)、QYZ-2、山农紫麦1号(SNZM1)和农大3753(ND3753),2个蓝色小麦品系20064和20072以及普通白粒小麦品种济麦22(JM22,对照品种)为试验材料,系统研究了不同品种(系)彩色小麦的旗叶SPAD值、叶面积指数、干物质积累与转运、产量及其构成因素等方面的差异,和各农艺性状的稳定性以及产量可持续性。结果表明,各彩色小麦品种产量、千粒质量、开花期叶面积指数、花后SPAD值、开花期干物质积累量、成熟期干物质积累量、花后干物质积累量及收获指数均低于普通白粒小麦品种济麦22。各彩色小麦品种(系)间比较,紫色小麦QYZ-1产量显著高于其他彩色小麦品种(系),单位面积粒数与QYZ-2无显著差异,但其千粒质量显著高于QYZ-2;紫色小麦QYZ-1开花期上三叶叶面积指数显著高于蓝色小麦品系及ND3753,紫色小麦QYZ-1花后旗叶SPAD、成熟期干物质积累量、花后干物质积累量、花前干物质转运量和收获指数均高于其余彩色小麦品种(系);与其他品种(系)比较,JM22和QYZ-1各农艺性状的变异系数(CV)均较小,彩色小麦间比较,QYZ-1的产量均值和产量可持续性指数(SYI)均较高。另外,相关分析表明,产量分别与开花期干物质积累量、成熟期干物质积累量、花后干物质积累量、花前干物质转运量、收获指数、旗叶花后28 d SPAD值、开花期全绿叶叶面积指数和千粒质量呈极显著的正相关关系。综合2 a的结果,表明QYZ-1具有适宜的叶面积指数,并维持了较高的花后旗叶SPAD值,花后旗叶的衰老较慢,开花-成熟时间较长,协同提高了花后干物质积累量和花前干物质转运量、成熟期干物质积累量和收获指数以及单位面积粒数和千粒质量,表现出较高的产量。综上所述,青研紫麦1号产量稳定且可持续性较好,是适宜鲁东地区栽培的彩色小麦品种。
文摘在偏迟播栽培条件下,对镇麦10号等3个品种,按穗数高、中、低3个类型在小局域地段进行随机取样,调查穗数、株高、产量、每穗粒数、千粒重等性状。结果表明,3个品种都表现穗型偏小、每穗粒数较少。穗数变化对每穗粒数、千粒重变化影响相对较小。穗数与产量呈极显著正相关,在调查区间范围内,3个品种的穗数与产量符合直线回归关系。穗数与每穗粒数均呈负相关,中镇麦10号、镇麦15相关达极显著水平,扬麦16相关未达显著水平。穗数与株高呈正相关,3个品种都达极显著水平,其中扬麦16穗数达37.34万/667 m 2及以上时发生斜倒。根据结果本文提出了偏迟播小麦以足穗高产的栽培途径及必须重视的三项栽培措施。