Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi...Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.展开更多
Nano-computed tomography(Nano-CT)is an emerging,high-resolution imaging technique.However,due to their low-light properties,tabletop Nano-CT has to be scanned under long exposure conditions,which the scanning process ...Nano-computed tomography(Nano-CT)is an emerging,high-resolution imaging technique.However,due to their low-light properties,tabletop Nano-CT has to be scanned under long exposure conditions,which the scanning process is time-consuming.For 3D reconstruction data,this paper proposed a lightweight 3D noise reduction method for desktop-level Nano-CT called AAD-ResNet(Axial Attention DeNoise ResNet).The network is framed by theU-net structure.The encoder and decoder are incorporated with the proposed 3D axial attention mechanism and residual dense block.Each layer of the residual dense block can directly access the features of the previous layer,which reduces the redundancy of parameters and improves the efficiency of network training.The 3D axial attention mechanism enhances the correlation between 3D information in the training process and captures the long-distance dependence.It can improve the noise reduction effect and avoid the loss of image structure details.Experimental results show that the network can effectively improve the image quality of a 0.1-s exposure scan to a level close to a 3-s exposure,significantly shortening the sample scanning time.展开更多
To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected...To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.展开更多
Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac...Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case.Methods:We performed the prospective cohort study which included 29 children with congenital heart defects.The hearts and the great vessels were modeled and printed out.Measurements of the same cardiac areas were taken in the same planes and points at multislice computed tomography images(group 1)and on printed 3D models of the hearts(group 2).Pre-printing treatment of the multislice computed tomography data and 3D model preparation were performed according to a newly developed algorithm.Results:The measurements taken on the 3D-printed cardiac models and the tomographic images did not differ significantly,which allowed us to conclude that the models were highly accurate and informative.The new algorithm greatly simplifies and speeds up the preparation of a 3D model for printing,while maintaining high accuracy and level of detail.Conclusions:The 3D-printed models provide an accurate preoperative assessment of the anatomy of a defect in each case.The new algorithm has several important advantages over other available programs.They enable the development of customized preliminary plans for surgical repair of each specific complex congenital heart disease,predict possible issues,determine the optimal surgical tactics,and significantly improve surgical outcomes.展开更多
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ...Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.展开更多
A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron micr...A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fou-rier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform si-multaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction seg-mentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm.展开更多
AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segment...AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segmentation was employed. In order to solve the category imbalance in retinal optical coherence tomography(OCT) images, the network parameters and loss function based on the 2D fully convolutional network were modified. For this network, the correlations of corresponding positions among adjacent images in space are ignored. Thus, we proposed a three-dimensional(3D) fully convolutional network for segmentation in the retinal OCT images.RESULTS: The algorithm was evaluated according to segmentation accuracy, Kappa coefficient, and F1 score. For the 3D fully convolutional network proposed in this paper, the overall segmentation accuracy rate is 99.56%, Kappa coefficient is 98.47%, and F1 score of retinal fluid is 95.50%. CONCLUSION: The OCT image segmentation algorithm based on deep learning is primarily founded on the 2D convolutional network. The 3D network architecture proposed in this paper reduces the influence of category imbalance, realizes end-to-end segmentation of volume images, and achieves optimal segmentation results. The segmentation maps are practically the same as the manual annotations of doctors, and can provide doctors with more accurate diagnostic data.展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images.The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real...This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images.The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real-time performance.To address these issues,we first adopt the Elastic Fusion algorithm to select key frames from indoor environment image sequences captured by the Kinect sensor and construct the indoor environment space model.Then,an indoor RGB-D image semantic segmentation network is proposed,which uses multi-scale feature fusion to quickly and accurately obtain object labeling information at the pixel level of the spatial point cloud model.Finally,Bayesian updating is used to conduct incremental semantic label fusion on the established spatial point cloud model.We also employ dense conditional random fields(CRF)to optimize the 3D semantic map model,resulting in a high-precision spatial semantic map of indoor scenes.Experimental results show that the proposed semantic mapping system can process image sequences collected by RGB-D sensors in real-time and output accurate semantic segmentation results of indoor scene images and the current local spatial semantic map.Finally,it constructs a globally consistent high-precision indoor scenes 3D semantic map.展开更多
Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shap...Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shapes and sizes.The popular deep learning‐based segmentation algorithms generally rely on the convolutional neural network(CNN)and Transformer.The former cannot extract the global image features effectively while the latter lacks the inductive bias and involves the complicated computation for 3D volume data.The existing hybrid CNN‐Transformer network can only provide the limited performance improvement or even poorer segmentation performance than the pure CNN.To address these issues,a short‐term and long‐term memory self‐attention network is proposed.Firstly,a distinctive self‐attention block uses the Transformer to explore the correlation among the region features at different levels extracted by the CNN.Then,the memory structure filters and combines the above information to exclude the similar regions and detect the multiple tumours.Finally,the multi‐layer reconstruction blocks will predict the tumour boundaries.Experimental results demonstrate that our method outperforms other methods in terms of subjective visual and quantitative evaluation.Compared with the most competitive method,the proposed method provides Dice(82.4%vs.76.6%)and Hausdorff distance 95%(HD95)(10.66 vs.11.54 mm)on the KiTS19 as well as Dice(80.2%vs.78.4%)and HD95(9.632 vs.12.17 mm)on the LiTS.展开更多
As the largest internal organ of the human body,the liver has an extremely complex vascularnetwork and multiple types of immune cells.It plays an important role in blood circulation,material metabolism,and immune resp...As the largest internal organ of the human body,the liver has an extremely complex vascularnetwork and multiple types of immune cells.It plays an important role in blood circulation,material metabolism,and immune response.Optical imaging is an effective tool for studying finevascular structure and immunocyte distribution of the liver.Here,we provide an overview of thestructure and composition of liver vessels,the threedimensional(3D)imaging of the liver,andthe spatial distribution and immune function of various cell components of the liver.Especially,we emphasize the 3D imaging methods for visualizing fine structure in the liver.Finally,wesummarize and prospect the development of 3D imaging of liver vesels and immune cells.展开更多
This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D...This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D-SPACE)sequence in terms of image quality,estimated signal-to-noise ratio(SNR),relative contrast-to-noise ratio(CNR),and the lesions’conspicuous of the female pelvis.Thirty-six females(age:51,28-73)with cervical carcinoma(n=20),rectal carcinoma(n=7),or uterine fibroid(n=9)were included.Patients underwent magnetic resonance(MR)imaging at a 3T scanner with the sequences of 3D-SPACE,CS-SPACE,and twodimensional(2D)T2-weighted turbo-spin echo(TSE).Quantitative analyses of estimated SNR and relative CNR between tumors and other tissues,image quality,and tissue conspicuity were performed.Two radiologists assessed the difference in diagnostic findings for carcinoma.Quantitative values and qualitative scores were analyzed,respectively.The estimated SNR and the relative CNR of tumor-to-muscle obturator internus,tumor-to-myometrium,and myometrium-to-muscle obturator internus was comparable between 3D-SPACE and CS-SPACE.The overall image quality and the conspicuity of the lesion scores of the CS-SPACE were higher than that of the 3D-SPACE(P<0.01).The CS-SPACE sequence offers shorter scan time,fewer artifacts,and comparable SNR and CNR to conventional 3D-SPACE,and has the potential to improve the performance of T2-weighted images.展开更多
The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based...The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.展开更多
At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, th...At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.展开更多
Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extractio...Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extraction and description of image evaluation parameters,and establishes the mapping relationship between image features and simulation results by using the optimal parameter values,thereby obtaining a three-dimensional image simulation analysis environment.On the basis of this model,by obtaining the response results of clothing collision detection and the results of local adaptive processing of clothing meshes,the cutting form and actual cutting effect of clothing are determined to construct a design model.The simulation results show that compared with traditional clothing design models,clothing simulation design based on 3D image analysis technology has a better effect,with the definition of fabric folds increasing by 40%.More striking contrast between light and dark,the resolution increasing by 30%,and clothing details getting a more real manifestation.展开更多
The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional method...The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.展开更多
The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturin...The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturing the details of Earth’s features. This is because they represent only three-dimensional objects in a single texture and do not provide a realistic representation of the real world. Additionally, there is a growing demand for up-to-date and accurate geo-information, particularly in urban areas. To address this challenge, a new technique is proposed in this study that involves integrating remote sensing, Geographic Information System, and Architecture Environment software to generate a highly-detailed three-dimensional model. The method described in this study includes several steps such as acquiring high-resolution satellite imagery, gathering ground truth data, performing radiometric and geometric corrections during image preprocessing, producing a 2D map of the region of interest, constructing a digital surface model by extending the building outlines, and transforming the model into multi-patch layers to create a 3D model for each object individually. The research findings indicate that the digital surface model obtained with comprehensive information is suitable for different purposes, such as environmental research, urban development and expansion planning, and shape recognition tasks.展开更多
Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public ...Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public channels will easily draw the attention of eavesdroppers.Here,we introduce an efficient encryption method for SPI data transmission that uses the 3D Arnold transformation to directly disrupt 1D single-pixel light signals and utilizes the elliptic curve encryption algorithm for key transmission.This encryption scheme immediately employs Hadamard patterns to illuminate the scene and then utilizes the 3D Arnold transformation to permutate the 1D light signal of single-pixel detection.Then the transformation parameters serve as the secret key,while the security of key exchange is guaranteed by an elliptic curve-based key exchange mechanism.Compared with existing encryption schemes,both computer simulations and optical experiments have been conducted to demonstrate that the proposed technique not only enhances the security of encryption but also eliminates the need for complicated pattern scrambling rules.Additionally,this approach solves the problem of secure key transmission,thus ensuring the security of information and the quality of the decrypted images.展开更多
Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible...Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.展开更多
Currently,deep learning is widely used in medical image segmentation and has achieved good results.However,3D medical image segmentation tasks with diverse lesion characters,blurred edges,and unstable positions requir...Currently,deep learning is widely used in medical image segmentation and has achieved good results.However,3D medical image segmentation tasks with diverse lesion characters,blurred edges,and unstable positions require complex networks with a large number of parameters.It is computationally expensive and results in high requirements on equipment,making it hard to deploy the network in hospitals.In this work,we propose a method for network lightweighting and applied it to a 3D CNN based network.We experimented on a COVID-19 lesion segmentation dataset.Specifically,we use three cascaded one-dimensional convolutions to replace a 3D convolution,and integrate instance normalization with the previous layer of one-dimensional convolutions to accelerate network inference.In addition,we simplify test-time augmentation and deep supervision of the network.Experiments show that the lightweight network can reduce the prediction time of each sample and the memory usage by 50%and reduce the number of parameters by 60%compared with the original network.The training time of one epoch is also reduced by 50%with the segmentation accuracy dropped within the acceptable range.展开更多
基金supported by the National Natural Science Foundation of China (Nos.52374078 and 52074043)the Fundamental Research Funds for the Central Universities (No.2023CDJKYJH021)。
文摘Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.
基金supported by the National Natural Science Foundation of China(62201618).
文摘Nano-computed tomography(Nano-CT)is an emerging,high-resolution imaging technique.However,due to their low-light properties,tabletop Nano-CT has to be scanned under long exposure conditions,which the scanning process is time-consuming.For 3D reconstruction data,this paper proposed a lightweight 3D noise reduction method for desktop-level Nano-CT called AAD-ResNet(Axial Attention DeNoise ResNet).The network is framed by theU-net structure.The encoder and decoder are incorporated with the proposed 3D axial attention mechanism and residual dense block.Each layer of the residual dense block can directly access the features of the previous layer,which reduces the redundancy of parameters and improves the efficiency of network training.The 3D axial attention mechanism enhances the correlation between 3D information in the training process and captures the long-distance dependence.It can improve the noise reduction effect and avoid the loss of image structure details.Experimental results show that the network can effectively improve the image quality of a 0.1-s exposure scan to a level close to a 3-s exposure,significantly shortening the sample scanning time.
文摘To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.
基金funded by the Ministry of Science and Higher Education of the Russian Federation as part of the World-Class Research Center Program:Advanced Digital Technologies(Contract No.075-15-2022-311,dated 20.04.2022).
文摘Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case.Methods:We performed the prospective cohort study which included 29 children with congenital heart defects.The hearts and the great vessels were modeled and printed out.Measurements of the same cardiac areas were taken in the same planes and points at multislice computed tomography images(group 1)and on printed 3D models of the hearts(group 2).Pre-printing treatment of the multislice computed tomography data and 3D model preparation were performed according to a newly developed algorithm.Results:The measurements taken on the 3D-printed cardiac models and the tomographic images did not differ significantly,which allowed us to conclude that the models were highly accurate and informative.The new algorithm greatly simplifies and speeds up the preparation of a 3D model for printing,while maintaining high accuracy and level of detail.Conclusions:The 3D-printed models provide an accurate preoperative assessment of the anatomy of a defect in each case.The new algorithm has several important advantages over other available programs.They enable the development of customized preliminary plans for surgical repair of each specific complex congenital heart disease,predict possible issues,determine the optimal surgical tactics,and significantly improve surgical outcomes.
基金funded by National Key R&D Program of China(No.2021YFB3401200)the National Natural Science Foundation of China(No.51875308)the Beijing Nature Sciences Fund-Haidian Originality Cooperation Project(L212002).
文摘Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.
文摘A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fou-rier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform si-multaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction seg-mentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm.
基金Supported by National Science Foundation of China(No.81800878)Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2017QN24)+1 种基金Key Technological Research Projects of Songjiang District(No.18sjkjgg24)Bethune Langmu Ophthalmological Research Fund for Young and Middle-aged People(No.BJ-LM2018002J)
文摘AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segmentation was employed. In order to solve the category imbalance in retinal optical coherence tomography(OCT) images, the network parameters and loss function based on the 2D fully convolutional network were modified. For this network, the correlations of corresponding positions among adjacent images in space are ignored. Thus, we proposed a three-dimensional(3D) fully convolutional network for segmentation in the retinal OCT images.RESULTS: The algorithm was evaluated according to segmentation accuracy, Kappa coefficient, and F1 score. For the 3D fully convolutional network proposed in this paper, the overall segmentation accuracy rate is 99.56%, Kappa coefficient is 98.47%, and F1 score of retinal fluid is 95.50%. CONCLUSION: The OCT image segmentation algorithm based on deep learning is primarily founded on the 2D convolutional network. The 3D network architecture proposed in this paper reduces the influence of category imbalance, realizes end-to-end segmentation of volume images, and achieves optimal segmentation results. The segmentation maps are practically the same as the manual annotations of doctors, and can provide doctors with more accurate diagnostic data.
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
基金This work was supported in part by the National Natural Science Foundation of China under Grant U20A20225,61833013in part by Shaanxi Provincial Key Research and Development Program under Grant 2022-GY111.
文摘This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images.The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real-time performance.To address these issues,we first adopt the Elastic Fusion algorithm to select key frames from indoor environment image sequences captured by the Kinect sensor and construct the indoor environment space model.Then,an indoor RGB-D image semantic segmentation network is proposed,which uses multi-scale feature fusion to quickly and accurately obtain object labeling information at the pixel level of the spatial point cloud model.Finally,Bayesian updating is used to conduct incremental semantic label fusion on the established spatial point cloud model.We also employ dense conditional random fields(CRF)to optimize the 3D semantic map model,resulting in a high-precision spatial semantic map of indoor scenes.Experimental results show that the proposed semantic mapping system can process image sequences collected by RGB-D sensors in real-time and output accurate semantic segmentation results of indoor scene images and the current local spatial semantic map.Finally,it constructs a globally consistent high-precision indoor scenes 3D semantic map.
基金supported by the National Key Research and Development Program of China under Grant No.2018YFE0206900the National Natural Science Foundation of China under Grant No.61871440 and CAAI‐Huawei Mind-Spore Open Fund.
文摘Tumour segmentation in medical images(especially 3D tumour segmentation)is highly challenging due to the possible similarity between tumours and adjacent tissues,occurrence of multiple tumours and variable tumour shapes and sizes.The popular deep learning‐based segmentation algorithms generally rely on the convolutional neural network(CNN)and Transformer.The former cannot extract the global image features effectively while the latter lacks the inductive bias and involves the complicated computation for 3D volume data.The existing hybrid CNN‐Transformer network can only provide the limited performance improvement or even poorer segmentation performance than the pure CNN.To address these issues,a short‐term and long‐term memory self‐attention network is proposed.Firstly,a distinctive self‐attention block uses the Transformer to explore the correlation among the region features at different levels extracted by the CNN.Then,the memory structure filters and combines the above information to exclude the similar regions and detect the multiple tumours.Finally,the multi‐layer reconstruction blocks will predict the tumour boundaries.Experimental results demonstrate that our method outperforms other methods in terms of subjective visual and quantitative evaluation.Compared with the most competitive method,the proposed method provides Dice(82.4%vs.76.6%)and Hausdorff distance 95%(HD95)(10.66 vs.11.54 mm)on the KiTS19 as well as Dice(80.2%vs.78.4%)and HD95(9.632 vs.12.17 mm)on the LiTS.
基金supported by the National Key Research and Development Program of China(2017YFA0700403),the Hainan University Scientic Research Foundation(KYQD(ZR)20078)the National Natural Science Foundation of China(81901691)。
文摘As the largest internal organ of the human body,the liver has an extremely complex vascularnetwork and multiple types of immune cells.It plays an important role in blood circulation,material metabolism,and immune response.Optical imaging is an effective tool for studying finevascular structure and immunocyte distribution of the liver.Here,we provide an overview of thestructure and composition of liver vessels,the threedimensional(3D)imaging of the liver,andthe spatial distribution and immune function of various cell components of the liver.Especially,we emphasize the 3D imaging methods for visualizing fine structure in the liver.Finally,wesummarize and prospect the development of 3D imaging of liver vesels and immune cells.
文摘This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D-SPACE)sequence in terms of image quality,estimated signal-to-noise ratio(SNR),relative contrast-to-noise ratio(CNR),and the lesions’conspicuous of the female pelvis.Thirty-six females(age:51,28-73)with cervical carcinoma(n=20),rectal carcinoma(n=7),or uterine fibroid(n=9)were included.Patients underwent magnetic resonance(MR)imaging at a 3T scanner with the sequences of 3D-SPACE,CS-SPACE,and twodimensional(2D)T2-weighted turbo-spin echo(TSE).Quantitative analyses of estimated SNR and relative CNR between tumors and other tissues,image quality,and tissue conspicuity were performed.Two radiologists assessed the difference in diagnostic findings for carcinoma.Quantitative values and qualitative scores were analyzed,respectively.The estimated SNR and the relative CNR of tumor-to-muscle obturator internus,tumor-to-myometrium,and myometrium-to-muscle obturator internus was comparable between 3D-SPACE and CS-SPACE.The overall image quality and the conspicuity of the lesion scores of the CS-SPACE were higher than that of the 3D-SPACE(P<0.01).The CS-SPACE sequence offers shorter scan time,fewer artifacts,and comparable SNR and CNR to conventional 3D-SPACE,and has the potential to improve the performance of T2-weighted images.
基金National Natural Science Foundation of China(No.61771123)。
文摘The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41571417 and 61305042)the National Science Foundation of the United States(Grant Nos.CNS-1253424 and ECCS-1202225)+4 种基金the Science and Technology Foundation of Henan Province,China(Grant No.152102210048)the Foundation and Frontier Project of Henan Province,China(Grant No.162300410196)China Postdoctoral Science Foundation(Grant No.2016M602235)the Natural Science Foundation of Educational Committee of Henan Province,China(Grant No.14A413015)the Research Foundation of Henan University,China(Grant No.xxjc20140006)
文摘At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional(3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion(BCB3DBM)is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system(LTS). Furthermore, block confusion based on position sequence group(BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.
文摘Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extraction and description of image evaluation parameters,and establishes the mapping relationship between image features and simulation results by using the optimal parameter values,thereby obtaining a three-dimensional image simulation analysis environment.On the basis of this model,by obtaining the response results of clothing collision detection and the results of local adaptive processing of clothing meshes,the cutting form and actual cutting effect of clothing are determined to construct a design model.The simulation results show that compared with traditional clothing design models,clothing simulation design based on 3D image analysis technology has a better effect,with the definition of fabric folds increasing by 40%.More striking contrast between light and dark,the resolution increasing by 30%,and clothing details getting a more real manifestation.
文摘The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.
文摘The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturing the details of Earth’s features. This is because they represent only three-dimensional objects in a single texture and do not provide a realistic representation of the real world. Additionally, there is a growing demand for up-to-date and accurate geo-information, particularly in urban areas. To address this challenge, a new technique is proposed in this study that involves integrating remote sensing, Geographic Information System, and Architecture Environment software to generate a highly-detailed three-dimensional model. The method described in this study includes several steps such as acquiring high-resolution satellite imagery, gathering ground truth data, performing radiometric and geometric corrections during image preprocessing, producing a 2D map of the region of interest, constructing a digital surface model by extending the building outlines, and transforming the model into multi-patch layers to create a 3D model for each object individually. The research findings indicate that the digital surface model obtained with comprehensive information is suitable for different purposes, such as environmental research, urban development and expansion planning, and shape recognition tasks.
基金Project supported by the National Natural Science Foundation of China(Grant No.62075241).
文摘Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public channels will easily draw the attention of eavesdroppers.Here,we introduce an efficient encryption method for SPI data transmission that uses the 3D Arnold transformation to directly disrupt 1D single-pixel light signals and utilizes the elliptic curve encryption algorithm for key transmission.This encryption scheme immediately employs Hadamard patterns to illuminate the scene and then utilizes the 3D Arnold transformation to permutate the 1D light signal of single-pixel detection.Then the transformation parameters serve as the secret key,while the security of key exchange is guaranteed by an elliptic curve-based key exchange mechanism.Compared with existing encryption schemes,both computer simulations and optical experiments have been conducted to demonstrate that the proposed technique not only enhances the security of encryption but also eliminates the need for complicated pattern scrambling rules.Additionally,this approach solves the problem of secure key transmission,thus ensuring the security of information and the quality of the decrypted images.
基金support from the National Key Research and Development Program of China(Grant No.2017YFA0700501),and the Innovation Fund of WNLO.
文摘Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.
文摘Currently,deep learning is widely used in medical image segmentation and has achieved good results.However,3D medical image segmentation tasks with diverse lesion characters,blurred edges,and unstable positions require complex networks with a large number of parameters.It is computationally expensive and results in high requirements on equipment,making it hard to deploy the network in hospitals.In this work,we propose a method for network lightweighting and applied it to a 3D CNN based network.We experimented on a COVID-19 lesion segmentation dataset.Specifically,we use three cascaded one-dimensional convolutions to replace a 3D convolution,and integrate instance normalization with the previous layer of one-dimensional convolutions to accelerate network inference.In addition,we simplify test-time augmentation and deep supervision of the network.Experiments show that the lightweight network can reduce the prediction time of each sample and the memory usage by 50%and reduce the number of parameters by 60%compared with the original network.The training time of one epoch is also reduced by 50%with the segmentation accuracy dropped within the acceptable range.