期刊文献+
共找到3,094篇文章
< 1 2 155 >
每页显示 20 50 100
Assessing cutter-rock interaction during TBM tunnelling in granite:Large-scale standing rotary cutting tests and 3D DEM simulations
1
作者 Xin Huang Miaoyuan Tang +4 位作者 Shuaifeng Wang Yixin Zhai Qianwei Zhuang Chi Zhang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3595-3615,共21页
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi... The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite. 展开更多
关键词 Large-scale standing rotary cutting test Discrete element method(DEM)simulation cutter-rock interaction Improved CSM(Colorado School of Mines) model cutting force
下载PDF
Design and Numerical Simulation of Dust Removal System for Sutomotive Iongitudinal Beam Plasma Cutting
2
作者 Wenqiang GAO Xudong MA Heyu TIAN 《Mechanical Engineering Science》 2024年第1期30-34,共5页
To improve the poor efficiency of the dust removal system in the plasma cutting station of automotive longitudinal beams,and reduce the cutting surface quality degradation due to dust,a bottom-side suction dust remova... To improve the poor efficiency of the dust removal system in the plasma cutting station of automotive longitudinal beams,and reduce the cutting surface quality degradation due to dust,a bottom-side suction dust removal system is designed,and the dust removal effect is optimized through the setting of the following dampers and diversion plates.The result of numerical simulation indicates that the particle collection rate can reach 99.44%,and the field test also proves the effectiveness of the dust removal system,which is of guiding significance for the transformation of other similar dust removal systems. 展开更多
关键词 plasma cutting dust removal equipment simulation
下载PDF
Numerical simulation of materials-oriented ultra-precision diamond cutting:review and outlook 被引量:3
3
作者 Liang Zhao Junjie Zhang +3 位作者 Jianguo Zhang Houfu Dai Alexander Hartmaier Tao Sun 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期1-21,共21页
Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on c... Ultra-precision diamond cutting is a promising machining technique for realizing ultra-smooth surface of different kinds of materials.While fundamental understanding of the impact of workpiece material properties on cutting mechanisms is crucial for promoting the capability of the machining technique,numerical simulation methods at different length and time scales act as important supplements to experimental investigations.In this work,we present a compact review on recent advancements in the numerical simulations of material-oriented diamond cutting,in which representative machining phenomena are systematically summarized and discussed by multiscale simulations such as molecular dynamics simulation and finite element simulation:the anisotropy cutting behavior of polycrystalline material,the thermo-mechanical coupling tool-chip friction states,the synergetic cutting responses of individual phase in composite materials,and the impact of various external energetic fields on cutting processes.In particular,the novel physics-based numerical models,which involve the high precision constitutive law associated with heterogeneous deformation behavior,the thermo-mechanical coupling algorithm associated with tool-chip friction,the configurations of individual phases in line with real microstructural characteristics of composite materials,and the integration of external energetic fields into cutting models,are highlighted.Finally,insights into the future development of advanced numerical simulation techniques for diamond cutting of advanced structured materials are also provided.The aspects reported in this review present guidelines for the numerical simulations of ultra-precision mechanical machining responses for a variety of materials. 展开更多
关键词 diamond cutting ultra-smooth surface material-oriented physics-based simulation model molecular dynamics finite element
下载PDF
Numerical simulation of three-dimensional fracturing fracture propagation in radial wells
4
作者 WANG Tianyu GUO Zhaoquan +4 位作者 LI Gensheng MA Zhengchao YONG Yuning CHANG Xin TIAN Shouceng 《Petroleum Exploration and Development》 SCIE 2023年第3期699-711,共13页
A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fractu... A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fracture geometries of radial well fracturing are simulated,the induction effect of radial well on the fracture is quantitatively characterized,and the influences of azimuth,horizontal principle stress difference,and reservoir matrix permeability on the fracture geometries are revealed.The radial wells can induce the fractures to extend parallel to their axes when two radial wells in the same layer are fractured.When the radial wells are symmetrically distributed along the direction of the minimum horizontal principle stress with the azimuth greater than 15,the extrusion effect reduces the fracture length of radial wells.When the radial wells are symmetrically distributed along the direction of the maximum horizontal principal stress,the extrusion increases the fracture length of the radial wells.The fracture geometries are controlled by the rectification of radial borehole,the extrusion between radial wells in the same layer,and the deflection of the maximum horizontal principal stress.When the radial wells are distributed along the minimum horizontal principal stress symmetrically,the fracture length induced by the radial well decreases with the increase of azimuth;in contrast,when the radial wells are distributed along the maximum horizontal principal stress symmetrically,the fracture length induced by the radial well first decreases and then increases with the increase of azimuth.The fracture length induced by the radial well decreases with the increase of horizontal principal stress difference.The increase of rock matrix permeability and pore pressure of the matrix around radial wells makes the inducing effect of the radial well on fractures increase. 展开更多
关键词 radial well three-dimensional fracturing fracture propagation simulation finite element-meshless method fluid-solid coupling
下载PDF
Three-Dimensional Simulation of Hydrodynamic Mechanism of Fluidized Bed Methanation
5
作者 Xiaojia Wang Danyang Shao +2 位作者 Delu Chen Yutong Gong Fengxia An 《Journal of Renewable Materials》 EI 2023年第7期3155-3175,共21页
Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas i... Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa. 展开更多
关键词 Organic solid waste methanation reactor multiphase flow three-dimensional simulation
下载PDF
Simulation Research on Coal-Water Slurry Gasification of Oil-Based Drill Cuttings Based on Fluent
6
作者 Liang Hu Hailong Yu +4 位作者 Liuyang Huang Yayun Xu XuleiWu Yunlan Sun Baozhong Zhu 《Energy Engineering》 EI 2023年第9期1963-1977,共15页
In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon... In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon atomic ratio on the gasification process of oil-based drill cuttings coal-water slurry was investigated.The results show that when the oxygen flow is constant,the outlet temperature of gasifier decreases,the content of effective gas increases,and the carbon conversion rate decreases with the increase of concentration;When the ratio of oxygen to carbon atoms is constant,the effective gas content rises and the temperature rises with the increase of the concentration,and the carbon conversion rate reaches the maximum value when the concentration of oil-based drill cuttings coal-water slurry is 65%;When the concentration is constant,the effective gas content decreases and the outlet temperature rises with the increase of the oxygen/carbon atom ratio,and the carbon conversion rate reaches 99.80%when the oxygen/carbon atom ratio is 1.03.It shows that this method can effectively decompose the organic matter in oilbased drill cuttings and realize the efficient and cooperative treatment of oil-based drill cuttings. 展开更多
关键词 Oil-base drill cuttings coal-water slurry gasification furnace numerical simulation FLUENT
下载PDF
Dynamic simulation insights into friction weakening effect on rapid long-runout landslides:A case study of the Yigong landslide in the Tibetan Plateau,China
7
作者 Zi-zheng Guo Xin-yong Zhou +3 位作者 Da Huang Shi-jie Zhai Bi-xia Tian Guang-ming Li 《China Geology》 CAS CSCD 2024年第2期222-236,共15页
This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plate... This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plateau of China was employed as the case,and the derived dynamic friction formula was included into the numerical simulation based on Particle Flow Code.Results showed that the friction decreased quickly from 0.64(the peak)to 0.1(the stead value)during the 5s-period after the sliding initiation,which explained the behavior of rapid movement of the landslide.The monitored balls set at different sections of the mass showed similar variation characteritics regarding the velocity,namely evident increase at the initial phase of the movement,followed by a fluctuation phase and then a stopping one.The peak velocity was more than 100 m/s and most particles had low velocities at 300s after the landslide initiation.The spreading distance of the landslide was calculated at the two-dimension(profile)and three-dimension scale,respectively.Compared with the simulation result without considering friction weakening effect,our results indicated a max distance of about 10 km from the initial unstable position,which fit better with the actual situation. 展开更多
关键词 Rapid long-runout landslide PFC Friction weakening three-dimension Numerical simulation Tibetan Plateau Hydrogeology Engineering Geological hazards survey engineering
下载PDF
Multiscale simulation of nanometric cutting of single crystal copper——effect of different cutting speeds 被引量:6
8
作者 Hongmin PEN Qingshun BAI Yingchun LIANG Mingjun CHEN 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第6期440-446,共7页
A multiscale simulation has been performed to determine the effect of the cutting speed on the deformation mechanism and cutting forces in nanometric cutting of single crystal copper. The multiscale simulation model, ... A multiscale simulation has been performed to determine the effect of the cutting speed on the deformation mechanism and cutting forces in nanometric cutting of single crystal copper. The multiscale simulation model, which links the finite element method and the molecular dynamics method, captures the atomistic mechanisms during nanometric cutting from the free surface without the computational cost of full atomistic simulations. Simulation results show the material deformation mechanism of single crystal copper greatly changes when the cutting speed exceeds the material static propagation speed of plastic wave. At such a high cutting speed, the average magnitudes of tangential and normal forces increase rapidly. In addition, the variation of strain energy of work material atoms in different cutting speeds is investigated. 展开更多
关键词 Multiscale simulation Nanometric cutting Single crystal copper Propagation speed of plastic wave
下载PDF
Study on Simulation of Machining Errors Caused by Cutting Force 被引量:1
9
作者 SHAO Xiaodong1,ZHANG Liu2,LIN Zhaoxu1 (1. School of Mechano-electronic Engineering,Xidian University,Xi’an 710071,China 2. 14th Institute of China Electronics Technology Company,Najin 200013,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期167-172,共6页
Machining errors caused by cutting force are studied in this paper,and an algorithm to simulate errors is putted forward. In the method,continuous machining process is separated into many machining moments. The deform... Machining errors caused by cutting force are studied in this paper,and an algorithm to simulate errors is putted forward. In the method,continuous machining process is separated into many machining moments. The deformation of work-piece and cutter at every moment is calculated by finite element method. The machined work-piece is gained by Boolean operation between deformed work-piece and cutter. By analyzing data of final work-piece,machining errors are predicted. The method is proved true by experiment. 展开更多
关键词 MACHINING ERROR simulation cutting force FEM
下载PDF
Three-Dimensional and Cross-sectional Characteristics of Normal Grain Growth Based on Monte Carlo Simulation 被引量:3
10
作者 Xiaoyan Song Guoquan Liu(Material Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China)(Department of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1998年第3期129-133,139,共6页
An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of norm... An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of normal grain growth was done. It was found that the time exponent of grain growth determined from cross-section exhibits the same rule of increasing slowly with time and approaching the theoretical value n = 0.5 of steadygrain growth as the three-dimensional (3-D) system. From change of the number of grains per unit area with timemeasured in cross-section, the state of 3-D normal grain growth may be predicted. The gtain size distribution incross-section is different from that in 3-D system and can not express the evolution characteristic of the 3-D distribution. Furthermore, there exists statistical connection between the topological parameters in cross-section and thosein three-dimensions. 展开更多
关键词 Monte Carlo simulation normal grain growth three-dimension cross-section CHARACTERISTICS
下载PDF
Three-dimensional visualization and virtual reality simulation role in hepatic surgery:Further research warranted 被引量:3
11
作者 Faiza Ahmed Vinay Jahagirdar +1 位作者 Sravya Gudapati Mohamad Mouchli 《World Journal of Gastrointestinal Surgery》 SCIE 2022年第7期723-726,共4页
Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the ... Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the diagnostic accuracy,and decision-making.Hepatobiliary procedures are technically complex and the use of AI in perioperative management can improve patient outcomes as discussed below.Three-dimensional(3D)reconstruction of images obtained via ultrasound,computed tomography scan or magnetic resonance imaging,can help surgeons better visualize the surgical sites with added depth perception.Preoperative 3D planning is associated with lesser operative time and intraoperative complications.Also,a more accurate assessment is noted,which leads to fewer operative complications.Images can be converted into physical models with 3D printing technology,which can be of educational value to students and trainees.3D images can be combined to provide 3D visualization,which is used for preoperative navigation,allowing for more precise localization of tumors and vessels.Nevertheless,AI enables surgeons to provide better,personalized care for each patient. 展开更多
关键词 Artificial intelligence three-dimensional printing Liver surgery Virtual reality Preoperative planning simulation
下载PDF
Three-Dimensional Finite Element Numerical Simulation and Physical Experiment for Magnetism-Stress Detecting in Oil Casing 被引量:2
12
作者 MENG Fanshun ZHANG Jie +2 位作者 YANG Chaoqun YU Weizhe CHEN Yuxi 《Journal of Ocean University of China》 SCIE CAS 2015年第4期669-674,共6页
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i... The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment. 展开更多
关键词 oil casing damage magnetism-stress detecting magnetic anisotropy finite element analysis physical experiment relative magnetic permeability ANSYS three-dimensional numerical simulation
下载PDF
Three-dimensional discrete element numerical simulation of Paleogene salt structures in the western Kuqa foreland thrust belt 被引量:3
13
作者 LI Jianghai ZHANG Yu +1 位作者 WANG Honghao WANG Dianju 《Petroleum Exploration and Development》 2020年第1期68-79,共12页
Taking the Paleogene salt strata in the west of Kuqa foreland thrust belt as study object, the deformation features of salt structure in the compression direction and perpendicular to the compression direction were ex... Taking the Paleogene salt strata in the west of Kuqa foreland thrust belt as study object, the deformation features of salt structure in the compression direction and perpendicular to the compression direction were examined to find out the control factors and formation mechanisms of the salt structures. By using the three-dimensional discrete element numerical simulation method, the formation mechanisms of typical salt structures of western Kuqa foreland thrust belt in Keshen and Dabei work areas were comprehensively analyzed. The simulation results show that the salt deformation in Keshen and Dabei work areas is of forward spread type, with deformation concentrated in the piedmont zone;the salt deformation is affected by the early uplift near the compression end, pre-existing basement faults, synsedimentary process and the initial salt depocenter;in the direction perpendicular to the compression direction, salt rocks near the compression end have strong lateral mobility with the velocity component moving towards the middle part, and the closer to the middle, the larger the velocity will be, so that salt rocks will aggregate towards the middle and deform intensely, forming complex folds and separation of salt structures from salt source, and local outcrop with thrust faults. Compared with 2 D simulation, 3 D simulation can analyze salt structures in the principal stress direction and direction perpendicular to the principal stress, give us a full view of the formation mechanisms of salt structures, and guide the exploration of oil and gas reservoirs related to salt structures. 展开更多
关键词 TARIM Basin KUQA Depression FORELAND THRUST belt salt structure three-dimensional discrete-element numerical simulation formation mechanism
下载PDF
THE SYSTEM SIMULATION OF THREE-DIMENSIONAL RADAR 被引量:3
14
作者 ZhangWei XiangJingcheng WangXuegang 《Journal of Electronics(China)》 2004年第5期407-412,共6页
To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar syst... To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar system simulation software developed for frequencyphase scanning three-dimensional (3-D) radar. Experimental results prove that the software could be used for system evaluation and for training purposes as an attractive alternative to real EW system. 展开更多
关键词 System simulation Electronic Warfare(EW) three-dimensional(3-D) radars Intermediate Frequency (IF) signals
下载PDF
Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling 被引量:2
15
作者 金秋雪 刘波 +8 位作者 刘燕 王维维 汪恒 许震 高丹 王青 夏洋洋 宋志棠 封松林 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期128-131,共4页
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ... An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current. 展开更多
关键词 PCRAM cell RESET three-dimensional simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling of by in with
下载PDF
Three-Dimensional Rigid-Plastic FEM Simulation of Bulk Forming Processes with New Contact and Remeshing Techniques 被引量:1
16
作者 Debin Shan and Youngsuk Kim School of Mechanical Engineering, Kyungpook National University, Taegu 702-70 1, South Korea Hyunsoo Kim Graduate School of Mechanical Engineering, Kyungpook National University, Taegu 702-701, South Korea E-mail: shandb@public 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第3期329-332,共4页
Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic... Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic FEM code has been developed. Isothermal forging process of a cylindrical housing has been simulated. The simulation results show that the given techniques and the FEM code are reasonable and feasible for three-dimensional bulk forming processes. 展开更多
关键词 three-dimensional Rigid-Plastic FEM simulation of Bulk Forming Processes with New Contact and Remeshing Techniques FEM simulation
下载PDF
Numerical simulations and comparative analysis of two- and three-dimensional circulating fluidized bed reactors for CO2 capture 被引量:1
17
作者 Yefeng Zhou Yifan Han +7 位作者 Yujian Lu Hongcun Bai Xiayi Hu Xincheng Zhang Fanghua Xie Xiao Luo Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期2955-2967,共13页
Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.... Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.The numerical simulation by computational fluid dynamics(CFD)is believed as a promising tool to study CO2 adsorption process in CFBR.Although three-dimensional(3D)simulations were proved to have better predicting performance with the experimental results,two-dimensional(2D)simulations have been widely reported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational efficiency recently.However,the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study.Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions,it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions.In this work,the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors,in which the separation rate,species distribution and hydrodynamic characteristics were comparatively studied for both model frames.With both accuracy and computational costs considered,the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions,which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR. 展开更多
关键词 Two-and three-dimensional simulations Circulating fluidized bed reactor Carbon dioxide adsorption Computational fluid dynamics Operating conditions
下载PDF
Numerical simulations on cutting of frozen soil using HJC Model 被引量:1
18
作者 WenQiang Zhang YongHong Niu 《Research in Cold and Arid Regions》 CSCD 2020年第3期134-143,共10页
Numerical simulation is known as an effective method for mechanical properties during frozen soil excavation.In order to reveal the development of cutting force,effective stress and cutting fragments in frozen silt du... Numerical simulation is known as an effective method for mechanical properties during frozen soil excavation.In order to reveal the development of cutting force,effective stress and cutting fragments in frozen silt during the cutting process,we introduce an explicit finite element program LS-DYNA to establish a two-dimensional numerical model of the frozen soil cut.We also use the Holmquist-Johnson-Cook(HJC)damage constitutive model for simulating the variation of soil mechanical properties according to the strong dependence between the cutting tool and frozen silt during the process with different cutting depths,angles and velocities.Meanwhile,a series of experimental results are acquired of frozen silt cutting to prove the application of the HJC model during simulation of cutting force variations.The result shows that the cutting force and fragment size are strongly influenced by cutting depths and cutting velocities increased,and the maximum effective stress at points where the tool contacts frozen soil during the cutting process.In addition,when the cutting angle is 52°,the cutting force is the smallest,and the cutting angle is optimum.Thus,the prediction of frozen soil mechanical properties on the cutting process by this model is conducive to selecting machinery equipment in the field. 展开更多
关键词 frozen soil cutting numerical simulation HJC damage constitutive model mechanical properties
下载PDF
Research on Clothing Simulation Design Based on Three-Dimensional Image Analysis 被引量:1
19
作者 Wenyao Zhu Xue Li Young-Mi Shon 《Computers, Materials & Continua》 SCIE EI 2020年第10期945-962,共18页
Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extractio... Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extraction and description of image evaluation parameters,and establishes the mapping relationship between image features and simulation results by using the optimal parameter values,thereby obtaining a three-dimensional image simulation analysis environment.On the basis of this model,by obtaining the response results of clothing collision detection and the results of local adaptive processing of clothing meshes,the cutting form and actual cutting effect of clothing are determined to construct a design model.The simulation results show that compared with traditional clothing design models,clothing simulation design based on 3D image analysis technology has a better effect,with the definition of fabric folds increasing by 40%.More striking contrast between light and dark,the resolution increasing by 30%,and clothing details getting a more real manifestation. 展开更多
关键词 3D image analysis clothing simulation feature extraction optimal solution mapping relationship collision detection grid layout cutting effect
下载PDF
Simulation-Based Construction of Three-Dimensional Process Model for Punching Cartridge Cases 被引量:1
20
作者 Zhifang Wei Yechang Hu +1 位作者 Wu Lyu Jianzhong Gao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期276-284,共9页
A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching a... A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching and forming process of cartridge cases are established,and the corresponding simulation result model of each intermediate procedure is obtained by continuously performing the forming process simulation. The simulation model cannot annotate size and process information due to poor interface between DEFORM software and CAD software. Thus,a 3D annotation module is developed with secondary development technology of UG NX software. Consequently,the final process model with dimension and process information is obtained. Then,with the current 3D process management system,the 3D punching and forming process design of cartridge cases can be completed further. An example is also provided to illustrate that the relative error between the simulation process model and the physical model is less than 2%,which proves the validity and reliability of the proposed method in this study. 展开更多
关键词 punching three-dimensional process model finite element simulation three-dimensional annotation
下载PDF
上一页 1 2 155 下一页 到第
使用帮助 返回顶部