期刊文献+
共找到25,202篇文章
< 1 2 250 >
每页显示 20 50 100
Three-point bending behavior of aluminum foam sandwich with steel panel 被引量:7
1
作者 祖国胤 卢日环 +4 位作者 李小兵 仲照阳 马幸江 韩明博 姚广春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2491-2495,共5页
Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated... Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated. The results indicate that the maximum bending load increases with the thickness of both steel panel and foam core. The failure of sandwich can be ascribed to the crush and shear damage of foam core and the delamination of glued interface at a large bending load, The crack on the foam wall developed in the melting foam procedure is the major factor for the failure of foam core. The sandwich structure with thick foam core and thin steel panel has the optimal specific bending strength. The maximum bending load of that with 8 mm panel and 50 mm foam core is 66.06 kN. 展开更多
关键词 aluminum foam sandwich three-point bending failure mode panel thickness
下载PDF
Three-point bending performance of a new aluminum foam composite structure 被引量:6
2
作者 王宁珍 陈祥 +3 位作者 李奡 李言祥 张华伟 刘源 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期359-368,共10页
A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composit... A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed. 展开更多
关键词 composite structure three-point bending strength aluminum foam sandwich glass fiber
下载PDF
Three-point bending of honeycomb sandwich beams with facesheet perforations 被引量:3
3
作者 Pengbo Su Bin Han +2 位作者 Zhongnan Zhao Qiancheng Zhang Tian Jian Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第4期667-675,共9页
A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under threepoint bending,both analytically and numerically.Perforated square holes in the bottom facesheet are characterize... A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under threepoint bending,both analytically and numerically.Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet(perforation ratio).While for large-scale engineering applications like the decks of cargo vehicles and transportation ships,the perforations are needed to facilitate the fabrication process(e.g.,laser welding)as well as service maintenance,it is demonstrated that these perforations,when properly designed,can also enhance the resistance of the sandwich to bending.For illustration,fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs.Further,the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes:(1)bending failure,i.e.,yielding of beam cross-section and buckling of top facesheet caused by bending moment;(2)shear failure,i.e.,yielding and buckling of core webs due to shear forcing.The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios.As the perfo-ration ratio is increased,the load of shear failure increases due to thickening core webs,while that of bending failure decreases due to the weakening bottom facesheet.Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal,leading to significantly enhanced failure load(up to 60%increase)relative to that of a non-perforated sandwich beam with equal mass. 展开更多
关键词 Honeycomb sandwich Facesheet perforation three-point bending Analytical model
下载PDF
Experimental,Numerical,and Analytical Studies on the Bending of Mechanically Lined Pipe 被引量:1
4
作者 WEI Wen-bin YUAN Lin +1 位作者 ZHOU Jia-sheng LIU Zheng 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期221-232,共12页
Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which cau... Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results. 展开更多
关键词 lined pipe bending nonlinear ring theory BUCKLING PLASTICITY
下载PDF
Effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on tensile and bending properties of high-Al-containing Mg alloys 被引量:1
5
作者 Sumi Jo Gyo Myeong Lee +2 位作者 Jong Un Lee Young Min Kim Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期779-793,共15页
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext... This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86. 展开更多
关键词 Mg–Al alloy EXTRUSION bending Precipitation Microstructure
下载PDF
A CATASTROPHE ANALYSIS ON THE STABILITY OF THE CRACK GROWTH IN THREE-POINT BENDING SPECIMENS 被引量:2
6
作者 Wei Demin Fan Xuejun, Taiyuan Unversity of Technology, Taiyuan 030024 《Acta Mechanica Solida Sinica》 SCIE EI 1996年第2期179-183,共5页
This paper presents an attempt at the application of catastrophe theory to the stability analysis of J-controlled crack growth in three-point bending specimens. By introducing the solutions of J-integral in the comple... This paper presents an attempt at the application of catastrophe theory to the stability analysis of J-controlled crack growth in three-point bending specimens. By introducing the solutions of J-integral in the completely yielding state for the ideal plastic material, the critical condition of losing stability for the crack propagation in the specimen is obtained, based on the cusp catastrophe theory. The process of the crack growth from geometrical sense is described. 展开更多
关键词 crack growth STABILITY cusp catastrophe J-INTEGRAL three-point bending specimen
下载PDF
Fabrication of lightweight 3D interpenetrated NiTi@Mg composite with superior bending properties
7
作者 Yu-jing LIU Xiao-chun LIU +4 位作者 Kun-mao LI Xiang WU Sheng-feng ZHOU Wei LI Wen-cai ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3569-3584,共16页
A NiTi@Mg interpenetrating phase composite with high strength and lightweight was prepared by additive manufacturing(AM)and infiltration technology,and the interface bonding,three-point bending properties and cyclic c... A NiTi@Mg interpenetrating phase composite with high strength and lightweight was prepared by additive manufacturing(AM)and infiltration technology,and the interface bonding,three-point bending properties and cyclic compressive properties of NiTi@Mg composites were investigated.The results show that the metallurgically bonded interface is formed at the NiTi/Mg interfaces.The bending strength and compressive strength of the NiTi@Mg composite are 2.5 and 1.7 times higher than those of the NiTi scaffold,respectively.During the bending deformation process,a large number of dislocations are observed to accumulate in the soft Mg area at the interface.Furthermore,the finite element model showed that the stress accumulation area,where the bending crack is initiated,is located at the interface of NiTi and Mg.The strengthening mechanism of NiTi@Mg composites is attributed to the twinning strengthening of Mg and heterogeneous structure strengthening. 展开更多
关键词 metal composites NiTi@Mg bending properties finite element simulation strengthening mechanism
下载PDF
Bending Failure Mode and Prediction Method of the Compressive Strain Capacity of A Submarine Pipeline with Dent Defects
8
作者 HOU Fu-heng JIA Lu-sheng +3 位作者 CHEN Yan-fei ZHANG Qi ZHONG Rong-feng WANG Chun-sha 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期636-647,共12页
A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression... A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline. 展开更多
关键词 submarine pipeline dent defect bending load local buckling compressive strain capacity
下载PDF
Bending Strength of Glass Materials under Strong Dynamic Impact and Its Strain Rate Effects
9
作者 LIU Xiaogen QI Shuang +2 位作者 WEI Shaoshan WAN Detian JIN Chunxia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1358-1364,共7页
Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and dif... Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading. 展开更多
关键词 glass materials strong dynamic impact bending strength strain rate effect dynamic enhancement factor
下载PDF
Cryogenic springback of 2219-W aluminum alloy sheet through V-shaped bending
10
作者 Xiao-bo FAN Qi-liang WANG +1 位作者 Fang-xing WU Xu-gang WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3185-3193,共9页
A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism w... A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism was elucidated through mechanical analyses and numerical simulations.The results indicated that the springback angle at cryogenic temperatures was greater than that at room temperature.The springback angle increased further as the temperature returned to ambient conditions,attributed to the combined effects of the “dual enhancement effect” and thermal expansion.Notably,a critical fillet radius made the springback angle zero for 90° V-shaped bending.The critical fillet radius at cryogenic temperatures was smaller than that at room temperature,owing to the influence of temperature variations on the bending moment ratio between the forward bending section at the fillet and the reverse bending section of the straight arm. 展开更多
关键词 2219-W aluminum alloy cryogenic forming V-shape bending SPRINGBACK critical fillet radius
下载PDF
Analysis of deformation mechanisms in magnesium single crystals using a dedicated four-point bending tester
11
作者 Yutaka Yoshida Rikuto Izawa Kenji Ohkubo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1911-1917,共7页
In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending ... In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials. 展开更多
关键词 Four-point bending Magnesium single crystal TWINNING Basal slip Scanning electron microscopy Electron backscatter diffraction
下载PDF
Bending strength degradation of a cantilever plate with surface energy due to partial debonding at the clamped boundary
12
作者 Zhenliang HU Xueyang ZHANG Xianfang LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1573-1594,共22页
This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mecha... This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported. 展开更多
关键词 micro/nanoscale cantilever plate partially debonded bending fracture singular integral equation oscillatory singularity
下载PDF
Modelling and Simulation on the Effect of Hot Forming Damage on Three-Point Bending Performance of Beam Components
13
作者 Weimin Zhuang Pengyue Wang +2 位作者 Yang Liu Dongxuan Xie Hongda Shi 《Journal of Beijing Institute of Technology》 EI CAS 2020年第3期399-409,共11页
The effects of forming damage are analyzed,which occur during hot stamping process,on the load-carrying capacity and failure mode of hot stamped beams.A damage-coupled pre-forming constitutive model was proposed,in wh... The effects of forming damage are analyzed,which occur during hot stamping process,on the load-carrying capacity and failure mode of hot stamped beams.A damage-coupled pre-forming constitutive model was proposed,in which the damage during hot stamping process was introduced into the service response.The constitutive model was applied into the three-point bending simulation of a hot stamped beam,and then the influences of forming damage on the load-carrying capacity and cracks propagation were investigated.The results show that the forming damage reduces the maximum load capacity of the hot stamped beam by 7.5%.It also causes the crack to occur earlier and promotes crack to propagate along the radial direction of the punch. 展开更多
关键词 constitutive modelling hot-stamped beam forming damage three-point bending crack propagation
下载PDF
Experimental and theoretical analyses of package-on-package structure under three-point bending loading
14
作者 贾苏 王习术 任淮辉 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期346-354,共9页
High density packaging is developing toward miniaturization and integration, which causes many difficulties in designing, manufacturing, and reliability testing. Package-on-Package (POP) is a promising three-dimensi... High density packaging is developing toward miniaturization and integration, which causes many difficulties in designing, manufacturing, and reliability testing. Package-on-Package (POP) is a promising three-dimensional high- density packaging method that integrates a chip scale package (CSP) in the top package and a fine-pitch ball grid array (FBGA) in the bottom package. In this paper, in-situ scanning electron microscopy (SEM) observation is carried out to detect the deformation and damage of the PoP structure under three-point bending loading. The results indicate that the cracks occur in the die of the top package, then cause the crack deflection and bridging in the die attaching layer. Furthermore, the mechanical principles are used to analyse the cracking process of the PoP structure based on the multi-layer laminating hypothesis and the theoretical analysis results are found to be in good agreement with the experimental results. 展开更多
关键词 high density package in-situ SEM observation three-point bending multi-layer lami- nating hypothesis
下载PDF
A Light and Simplified Branch Bending Method for Young Pear Trees
15
作者 Jintao XU Longfei LI +3 位作者 Minghui JI Huan LIU Lijuan GAO Baofeng HAO 《Plant Diseases and Pests》 2024年第2期19-21,共3页
Aiming at high cost and low efficiency of conventional branch bending method in the modern intensive planting and labor-saving cultivation mode of young pear trees,this paper provides a new branch bending method with ... Aiming at high cost and low efficiency of conventional branch bending method in the modern intensive planting and labor-saving cultivation mode of young pear trees,this paper provides a new branch bending method with wide source of raw materials,cheap price and simple operation,which is also suitable for the management of low-age branches in the process of high grafting and upgrading of traditional big trees. 展开更多
关键词 Pear tree Light and simplified Branch bending METHOD
下载PDF
The Effects of the Longitudinal Axis of Loading upon Bending, Shear and Torsion of a Thin-Walled Cantilever Channel Beam
16
作者 David W. A. Rees Abdelraouf M. Sami Alsheikh 《World Journal of Mechanics》 2024年第5期73-96,共24页
Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoreticall... Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoretically and numerically in terms of two longitudinal axes of loading not coincident with the shear centre. In particular, the warping displacements, stiffness and stress distributions are calculated for torsion applied to longitudinal axes passing through the section’s centroid and its web centre. The stress conversions derived from each action are superimposed to reveal a net sectional stress distribution. Therein, the influence of the axis position upon the net axial and shear stress distributions is established compared to previous results for each beam when loading is referred to a flexural axis through the shear centre. Within the net stress analysis is, it is shown how the constraint to free warping presented by the end fixing modifies the axial stress. The latter can be identified with the action of a ‘bimoment’ upon each thin-walled section. 展开更多
关键词 Thin-Aluminium Channels Cantilever Beam bending Shear Torsion WARPING BIMOMENT Flexural Axis Centre of Twist CENTROID Shear Centre Torsional Stiffness Constrained Stress
下载PDF
Prediction of seismic-induced bending moment and lateral displacement in closed and open-ended pipe piles:A genetic programming approach
17
作者 Laith Sadik Duaa Al-Jeznawi +2 位作者 Saif Alzabeebee Musab A.Q.Al-Janabi Suraparb Keawsawasvong 《Artificial Intelligence in Geosciences》 2024年第1期82-95,共14页
Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address... Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types. 展开更多
关键词 Genetic programming Pipe piles Lateral response bending moment Earthquake loading Standard penetration test Machine learning
下载PDF
The Applied Research of Fracture in Three-point Bending to Blanking of Bearing Steel
18
作者 Youtang Li Ping Ma Changfeng Yan 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第z2期199-205,共7页
The application of fracture in three-point bending to blanking of bearing steel is studied in this paper. Several mechanical models of stress blanking are discussed at first. And then the experiments have been made in... The application of fracture in three-point bending to blanking of bearing steel is studied in this paper. Several mechanical models of stress blanking are discussed at first. And then the experiments have been made in special equipment of three-point bending designed by us. Several problems, such as the suitable span, the relations between bending and tension bending complex, the ratio of blanking length to the diameter, the relations of blank length to force, the feature of fracture, are studied through the experiments. The suitable parameters of three-point bending to blanking, depth and tip radius of notch and the ratio between blanking length and stick diameter have been proposed. 展开更多
关键词 BEARING steel three POINTS bending BLANKING CRACK technique FRACTURE design
下载PDF
Dynamic Fracture Behaviors of Selected Aluminum Alloys Under Three-point Bending 被引量:2
19
作者 Ming-zhi XING Yong-gang WANG Zhao-xiu JIANG 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第4期193-200,共8页
The dynamic fracture behaviors of the extruded 2024-T4 and 7075-T6 aluminum alloys are investigated by using an instrumented drop tower machine.The specimens are made from a 25 mm diameter extruded circular rod.The dy... The dynamic fracture behaviors of the extruded 2024-T4 and 7075-T6 aluminum alloys are investigated by using an instrumented drop tower machine.The specimens are made from a 25 mm diameter extruded circular rod.The dynamic three-point bending tests of each alloy are carried out at different impact velocities.The initiation fracture toughness and average propagation fracture toughness of 2024-T4 and 7075-T6 are determined at different loading rates.The results show that both the initiation toughness and the propagation toughness increase with the loading rate.Further,the difference between the fracture toughness behaviors of 2024-T4 and 7075-T6 is found to be dependent on the variation of fracture mechanism.The comprehensive fractographic investigations of the fracture surfaces clearly demonstrate that the fracture mode of 2024-T4 is predominantly transgranular fracture with high density small-sized dimples,and the fracture mode of 7075-T6 is mainly intergranular fracture with many intermetallic particles in the bottom of voids located in the fracture surface. 展开更多
关键词 动态断裂行为 三点弯曲试验 铝合金 行为研究 断裂韧性 加载速率 断裂模式 IRMA
下载PDF
BEHAVIOUR OF PLASTERED STRAW-BALE ASSEMBLIES SUBJECTED TO THREE-POINT BENDING
20
作者 Michael Rakowski Colin MacDougall 《Journal of Green Building》 2012年第3期95-113,共19页
The search for more sustainable construction methods has renewed interest in straw-bale construction.Rectangular straw bales stacked in a running bond and plastered on the interior and exterior faces have been shown t... The search for more sustainable construction methods has renewed interest in straw-bale construction.Rectangular straw bales stacked in a running bond and plastered on the interior and exterior faces have been shown to have adequate strength to resist typical loads found in one-and two-storey structures.The straw bales provide excellent insulation,while possessing low embodied energy compared to conventional insulation materials.The structural behaviour of a load-bearing plastered straw-bale wall subject to uniform compressive loading has been the focus of a number of studies reported in the literature.However,in a typical building wall,there will be numerous locations(such as around window and door openings)where the load paths produce areas of concentrated stress.The behaviour in these regions cannot necessarily be predicted using tests from uniformly loaded wall assemblies.This paper describes experiments on plastered single bale assemblies subjected to three-point bending.These assemblies develop shear and flexural stresses,and so simulate the stresses that exist around door and window openings in a wall.The specimens were rendered with lime-cement plaster,and were either unreinforced,or contained steel“diamond lath”mesh embedded within the plaster.The specimens were pin-supported at various centre-to-centre distances(L)ranging from 200 mm to 500 mm.The height(H)of all specimens was constant at 330 mm.This gave a range of H/L values of 0.66 to 1.65.Two distinct types of failure were observed.For tests with H/L<1,failure was due to flexural tension cracks in the plaster which propagated through the depth of the plaster skin.For tests with H/L>1,failure was due to crushing of the plaster in compression under one of the loading points.It was shown that models based on simple mechanics were able to adequately predict the assembly strength.In particular,analysing the assemblies with H/L<1 as simple beams,and using the transformed section concept to deal with the straw and steel mesh,was adequate for predicting their strength.The results suggest that current practice for straw bale construction is generally appropriate.To avoid tensile cracking of plaster due to flexure,regions around doors,windows,and other openings should be designed such that H/L>1.In regions where H/L<1,the use of steel reinforcing mesh can increase the plastered bale strength by 30%on average. 展开更多
关键词 straw bale construction cement-lime plaster discontinuous regions structural testing 3-point bending
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部