The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex buil...The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex building obstacles,and the aircraft's high dynamics,traditional algorithms cannot find the optimal collision-free flying path between the UAV station and the destination.Accordingly,in this paper,we study the fast UAV path planning problem in a 3D urban environment from a source point to a target point and propose a Three-Step Experience Buffer Deep Deterministic Policy Gradient(TSEB-DDPG)algorithm.We first build the 3D model of a complex urban environment with buildings and project the 3D building surface into many 2D geometric shapes.After transformation,we propose the Hierarchical Learning Particle Swarm Optimization(HL-PSO)to obtain the empirical path.Then,to ensure the accuracy of the obtained paths,the empirical path,the collision information and fast transition information are stored in the three experience buffers of the TSEB-DDPG algorithm as dynamic guidance information.The sampling ratio of each buffer is dynamically adapted to the training stages.Moreover,we designed a reward mechanism to improve the convergence speed of the DDPG algorithm for UAV path planning.The proposed TSEB-DDPG algorithm has also been compared to three widely used competitors experimentally,and the results show that the TSEB-DDPG algorithm can archive the fastest convergence speed and the highest accuracy.We also conduct experiments in real scenarios and compare the real path planning obtained by the HL-PSO algorithm,DDPG algorithm,and TSEB-DDPG algorithm.The results show that the TSEBDDPG algorithm can archive almost the best in terms of accuracy,the average time of actual path planning,and the success rate.展开更多
The effects of a novel three-step aging process (T76+T6) on the electrochemical corrosion behavior of 7150 extruded aluminum alloy were evaluated and compared with those of the conventional retrogression and re-agi...The effects of a novel three-step aging process (T76+T6) on the electrochemical corrosion behavior of 7150 extruded aluminum alloy were evaluated and compared with those of the conventional retrogression and re-aging process (T77). The open circuit potential (OCP), cyclic polarization and electrochemical impedance spectra (EIS) of the A1 alloys were measured after treatment in three solutions (3.5% NaCl (mass fraction); 10 mmol/L NaCl + 0.1 mol/L Na2SO4; 4 mol/L NaCl + 0.5 mol/L KNO3 + 0.1 mol/L HNO3). The parameters including the corrosion potential, pitting potential, pit transition potential and steepness, and potential differences were extensively discussed to evaluate the corrosion behavior of the Al alloys. The electrochemical and scanning electron microscopy (SEM) data show that compared with the 7150-T77 Al alloy, the T76 + T6 aged 7150 A1 alloy exhibits better resistance to pitting corrosion, inter-granular corrosion (IGC) and exfoliation corrosion, which is attributed to further coarsening and inter-spacing of the grain boundary particles (GBPs) as revealed by transmission electron microscopy. Furthermore, the hardness tests indicate that an attractive combination of strength and corrosion resistance was obtained for the 7150 Al alloy with T76 + T6 treatment.展开更多
The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow st...The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow strain rate tests, electron probe microanalysis, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results revealed that three-step homogenization improved the uniformity of Zr distribution by eliminating segregation of the main alloying elements. During the second homogenization step at 350 °C for 10 h, coarse and strip-like equilibrium η phases formed which assisted the nucleation of Al3Zr dispersoids and reduced the width of the precipitate-free zone of A13Zr dispersoids. As a result, coarse recrystallization was greatly reduced after homogenization at 200 °C, 2 h + 350 °C, 10 h + 470 °C, 12 h, which contributed to improving the overall properties of the 7N01 aluminum alloys.展开更多
The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron m...The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy(TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively.展开更多
BACKGROUND Robotic surgery has been considered to be significantly better than laparoscopic surgery for complicated procedures.AIM To explore the short-term effect of robotic and laparoscopic spleen-preserving splenic...BACKGROUND Robotic surgery has been considered to be significantly better than laparoscopic surgery for complicated procedures.AIM To explore the short-term effect of robotic and laparoscopic spleen-preserving splenic hilar lymphadenectomy(SPSHL)for advanced gastric cancer(GC)by Huang’s three-step maneuver.METHODS A total of 643 patients who underwent SPSHL were recruited from April 2012 to July 2017,including 35 patients who underwent robotic SPSHL(RSPSHL)and 608 who underwent laparoscopic SPSHL(LSPSHL).One-to-four propensity score matching was used to analyze the differences in clinical data between patients who underwent robotic SPSHL and those who underwent laparoscopic SPSHL.RESULTS In all,175 patients were matched,including 35 patients who underwent RSPSHL and 140 who underwent LSPSHL.After matching,there were no significant differences detected in the baseline characteristics between the two groups.Significant differences in total operative time,estimated blood loss(EBL),splenic hilar blood loss(SHBL),splenic hilar dissection time(SHDT),and splenic trunk dissection time were evident between these groups(P<0.05).Furthermore,no significant differences were observed between the two groups in the overall noncompliance rate of lymph node(LN)dissection(62.9%vs 60%,P=0.757),number of retrieved No.10 LNs(3.1±1.4 vs 3.3±2.5,P=0.650),total number of examined LNs(37.8±13.1 vs 40.6±13.6,P=0.274),and postoperative complications(14.3%vs 17.9%,P=0.616).A stratified analysis that divided the patients receiving RSPSHL into an early group(EG)and a late group(LG)revealed that the LG experienced obvious improvements in SHDT and length of stay compared with the EG(P<0.05).Logistic regression showed that robotic surgery was a significantly protective factor against both SHBL and SHDT(P<0.05).CONCLUSION RSPSHL is safe and feasible,especially after overcoming the early learning curve,as this procedure results in a radical curative effect equivalent to that of LSPSHL.展开更多
An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for...An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.展开更多
The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step meth...The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step method. On thin buffer films of SiO2, which were first fabricated on glass substrates by the so,gel dip-coating method, a ZnO seed layer was deposited via RF magnetron sputtering. Then two different ZnO films, micro-nano and micro-only flowerlike structures, were grown by the hydrothermal method. The prepared films have different hydrophobic properties after surface modification. The structures of the obtained ZnO films were characterized using x-ray diffraction and field-emission scanning electron microscopy. A conclusion that a micro-nano composite structure is more beneficial to hydrophobicity than a micro-only structure was obtained through research into the effect of structure on hydrophobic properties.展开更多
As early as 1983,Sjaastad proposed the concept of cervicogenic headache(CH)in the World Headache Conference,that is,the pain from upper cervical joints and muscles can be referred to the head.CH is a group of syndrome...As early as 1983,Sjaastad proposed the concept of cervicogenic headache(CH)in the World Headache Conference,that is,the pain from upper cervical joints and muscles can be referred to the head.CH is a group of syndromes mainly caused by dysfunction of the upper cervical spine and its component muscles,ligaments,bony,vertebral arteries and/or soft tissue elements,usually not accompanied by neck pain.Therefore,the treatment strategy of CH focuses on pain relief and repair cervical lesions.Patients with painful disorders of upper cervical zygapophysial joints showed significant headache relief after directly treated at disordered cervical joints[1].展开更多
In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of squa...In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog(LF) scheme and the complete square conservation difference(CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration(RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error(RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite difference scheme for solving nonlinear equations.展开更多
First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setti...First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setting. Let H be a real Hilbert space and K be a nonempty closed convex subset of H. For arbitrarily chosen initial points x0, y0, z0 ∈ K, compute sequences xn, yn, zn such thatT : K→ H is a nonlinear mapping onto K. At last three-step models are applied to some variational inequality problems.展开更多
In this letter, an improved three-step search algorithm is presented, which uses both gray and chromatic information to boost the performance with random optimization and converge the motion vectors to global optima. ...In this letter, an improved three-step search algorithm is presented, which uses both gray and chromatic information to boost the performance with random optimization and converge the motion vectors to global optima. Experimental results show that this algorithm can efficiently improve the PSNR after motion compensation.展开更多
Pancreatic head carcinoma is characterized by high malignancy and a low survival rate and its mortality ranks fourth for malignant tumors with a 5-year survival rate of only 5%[1].Treatment of this cancer relies on su...Pancreatic head carcinoma is characterized by high malignancy and a low survival rate and its mortality ranks fourth for malignant tumors with a 5-year survival rate of only 5%[1].Treatment of this cancer relies on surgical resection.However,the resection rate is only about 20%,because majority of the patients are classified as unresectable when diagnosed due to distant metastasis or展开更多
Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A th...Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A three-step-meshing method for the multiple cracks identification in structures is presented. Firstly, the changes in natural frequency of a structure with various crack locations and depth are accurately obtained by means of wavelet finite element method, and then the damage coefficient method is used to determine the number and the region of cracks. Secondly, different regions in the cracked structure are divided into meshes with different scales, and then the small unit containing cracks in the damaged area is gradually located by iterative computation. Lastly, by finding the points of intersection of three frequency contour lines in the small unit, the crack location and depth are identified. In order to verify the effectiveness of the presented method, a multiple cracks identification experiment is carried out. The diagnostic tests on a cantilever beam under two working conditions show the accuracy of the proposed method: with a maximum error of crack location identification 2.7% and of depth identification 5.2%. The method is able to detect multiple crack of beam with less subdivision and higher precision, and can be developed as a multiple crack detection approach for complicated structures.展开更多
The purpose of this paper is to investigate some sufficient and necessary conditions for three-step Ishikawa iterative sequences with error terms for uniformly quasi-Lipschitzian mappings to converge to fixed points. ...The purpose of this paper is to investigate some sufficient and necessary conditions for three-step Ishikawa iterative sequences with error terms for uniformly quasi-Lipschitzian mappings to converge to fixed points. Our results extend and improve the recent ones announced by Liu [3,4], Xu and Noor [5], and many others.展开更多
Under the context of the New Three-step strategy of Chinese economic development, we use the reverse tracing method and petroleum, natural gas and coal as sources of carbon emissions. To eliminate the impact of region...Under the context of the New Three-step strategy of Chinese economic development, we use the reverse tracing method and petroleum, natural gas and coal as sources of carbon emissions. To eliminate the impact of regional and technological levels in the energy conversion process we improved the IPAT model and used it to predict and analyze China’s per capita carbon emissions in three assumed scenarios up to 2050. We found that China’s per capita carbon emissions peak wil occur respectively in 2020 and 2030 in different assumed scenarios; national per capita carbon emissions wil reach 2.0127–2.6791 tons; China’s per capita carbon emissions wil grow continuously at an average rate of 2.25%–3.40% per year before the peak year and then wil decline at a rate of 1.33%–1.78% per year. By the year of 2050, national per capita carbon emissions wil be 1.3147–1.8817 tons.展开更多
Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA...Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.展开更多
In this paper, we suggest and analyse a three-step iterative scheme with errors for solving nonlinear strongly accretive operator equation Tx = f without the Lipshitz condition. The results presented in this paper imp...In this paper, we suggest and analyse a three-step iterative scheme with errors for solving nonlinear strongly accretive operator equation Tx = f without the Lipshitz condition. The results presented in this paper improve and extend current results in the more general setting.展开更多
The porous anodic alumina membranes (PAAMs) have been successfully used as templates for the fabrication of functional nano-materials due to their outstanding regularity and physicochemical properties. In this paper...The porous anodic alumina membranes (PAAMs) have been successfully used as templates for the fabrication of functional nano-materials due to their outstanding regularity and physicochemical properties. In this paper, a transparent double-sided anodic alumina membrane with ultra-thin aluminum substrate was fabricated with the three-step anodic oxidation method in the oxalic acid electrolyte. The characters such as the top-surface morphology, membrane thickness, and depth of nanopores of this three-layer (A1203-A1-A1203) sandwiched nano-structure were controllable through regulating the main anodic oxidation conditions, e.g., anodic oxidation time of various steps, coating remove process. The experiments data revealed that the aluminum substrate is exponential declined with the oxidation time when it was approximately reduced by a few micrometers. This new double-sided anodic alumina membrane can be used as the high-quality functional field emission materials and templates.展开更多
A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) ...A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory.展开更多
In order to solve the hole-filling mismatch problem in virtual view synthesis, a three-step repairing(TSR) algorithm was proposed. Firstly, the image with marked holes is decomposed by the non-subsampled shear wave tr...In order to solve the hole-filling mismatch problem in virtual view synthesis, a three-step repairing(TSR) algorithm was proposed. Firstly, the image with marked holes is decomposed by the non-subsampled shear wave transform(NSST), which will generate high-/low-frequency sub-images with different resolutions. Then the improved Criminisi algorithm was used to repair the texture information in the high-frequency sub-images, while the improved curvature driven diffusion(CDD) algorithm was used to repair the low-frequency sub-images with the image structure information. Finally, the repaired parts of high-frequency and low-frequency sub-images are synthesized to obtain the final image through inverse NSST. Experiments show that the peak signal-to-noise ratio(PSNR) of the TSR algorithm is improved by an average of 2-3 dB and 1-2 dB compared with the Criminisi algorithm and the nearest neighbor interpolation(NNI) algorithm, respectively.展开更多
基金supported in part by the Hubei Provincial Science and Technology Major Project of China(Grant No.2020AEA011)in part by the National Ethnic Affairs Commission of the People’s Republic of China(Training Program for Young and Middle-aged Talents)(No:MZR20007)+4 种基金in part by the National Natural Science Foundation of China(Grant No.61902437)in part by the Hubei Provincial Natural Science Foundation of China(Grant No.2020CFB629)in part by the Application Foundation Frontier Project of Wuhan Science and Technology Program(Grant No.2020020601012267)in part by the Fundamental Research Funds for the Central Universities,South-Central MinZu University(No:CZQ21026)in part by the Special Project on Regional Collaborative Innovation of Xinjiang Uygur Autonomous Region(Plan to Aid Xinjiang with Science and Technology)(2022E02035)。
文摘The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex building obstacles,and the aircraft's high dynamics,traditional algorithms cannot find the optimal collision-free flying path between the UAV station and the destination.Accordingly,in this paper,we study the fast UAV path planning problem in a 3D urban environment from a source point to a target point and propose a Three-Step Experience Buffer Deep Deterministic Policy Gradient(TSEB-DDPG)algorithm.We first build the 3D model of a complex urban environment with buildings and project the 3D building surface into many 2D geometric shapes.After transformation,we propose the Hierarchical Learning Particle Swarm Optimization(HL-PSO)to obtain the empirical path.Then,to ensure the accuracy of the obtained paths,the empirical path,the collision information and fast transition information are stored in the three experience buffers of the TSEB-DDPG algorithm as dynamic guidance information.The sampling ratio of each buffer is dynamically adapted to the training stages.Moreover,we designed a reward mechanism to improve the convergence speed of the DDPG algorithm for UAV path planning.The proposed TSEB-DDPG algorithm has also been compared to three widely used competitors experimentally,and the results show that the TSEB-DDPG algorithm can archive the fastest convergence speed and the highest accuracy.We also conduct experiments in real scenarios and compare the real path planning obtained by the HL-PSO algorithm,DDPG algorithm,and TSEB-DDPG algorithm.The results show that the TSEBDDPG algorithm can archive almost the best in terms of accuracy,the average time of actual path planning,and the success rate.
基金Projects(51134007,51201186)supported by the National Natural Science Foundation of ChinaProject(51327902)supported by the Major Research Equipment Development,China+1 种基金Projects(2012CB619502,2010CB731701)supported by the National Basic Research Program of ChinaProject(12JJ6040)supported by the Natural Science Foundation of Hunan Province,China
文摘The effects of a novel three-step aging process (T76+T6) on the electrochemical corrosion behavior of 7150 extruded aluminum alloy were evaluated and compared with those of the conventional retrogression and re-aging process (T77). The open circuit potential (OCP), cyclic polarization and electrochemical impedance spectra (EIS) of the A1 alloys were measured after treatment in three solutions (3.5% NaCl (mass fraction); 10 mmol/L NaCl + 0.1 mol/L Na2SO4; 4 mol/L NaCl + 0.5 mol/L KNO3 + 0.1 mol/L HNO3). The parameters including the corrosion potential, pitting potential, pit transition potential and steepness, and potential differences were extensively discussed to evaluate the corrosion behavior of the Al alloys. The electrochemical and scanning electron microscopy (SEM) data show that compared with the 7150-T77 Al alloy, the T76 + T6 aged 7150 A1 alloy exhibits better resistance to pitting corrosion, inter-granular corrosion (IGC) and exfoliation corrosion, which is attributed to further coarsening and inter-spacing of the grain boundary particles (GBPs) as revealed by transmission electron microscopy. Furthermore, the hardness tests indicate that an attractive combination of strength and corrosion resistance was obtained for the 7150 Al alloy with T76 + T6 treatment.
基金Projects(2016YFB0300901,2016YFB0300902)supported by the National Key Research and Development Program of ChinaProject(51375503)supported by the National Natural Science Foundation of ChinaProject(2013A017)supported by Guangxi Zhuangzu Autonomous Region of China
文摘The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow strain rate tests, electron probe microanalysis, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results revealed that three-step homogenization improved the uniformity of Zr distribution by eliminating segregation of the main alloying elements. During the second homogenization step at 350 °C for 10 h, coarse and strip-like equilibrium η phases formed which assisted the nucleation of Al3Zr dispersoids and reduced the width of the precipitate-free zone of A13Zr dispersoids. As a result, coarse recrystallization was greatly reduced after homogenization at 200 °C, 2 h + 350 °C, 10 h + 470 °C, 12 h, which contributed to improving the overall properties of the 7N01 aluminum alloys.
基金Project(2012CB619502)supported by the National Basic Research Program of ChinaProject(2016YFB0300800)supported by the National Key Research and Development Program of China+1 种基金Project(CALT201507)supported by the CALT Research Innovation Partnership Fund,ChinaProject(HPCM-201403)supported by the State Key Laboratory of High Performance Complex Manufacturing,China
文摘The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy(TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively.
基金Supported by the Scientific and Technological Innovation Joint Capital Projects of Fujian Province,China,No.2016Y9031the Construction Project of Fujian Province Minimally Invasive Medical Center,No.[2017]171+2 种基金the Second-batch Special Support Funds for Fujian Province Innovation and Entrepreneurship Talents,No.2016B013Science and Technology Innovation Joint Fund Project of Fujian Province,No.2017Y9004the Special Fund for Clinical Research of the Wu Jieping Medical Foundation,No.320.6750.17511
文摘BACKGROUND Robotic surgery has been considered to be significantly better than laparoscopic surgery for complicated procedures.AIM To explore the short-term effect of robotic and laparoscopic spleen-preserving splenic hilar lymphadenectomy(SPSHL)for advanced gastric cancer(GC)by Huang’s three-step maneuver.METHODS A total of 643 patients who underwent SPSHL were recruited from April 2012 to July 2017,including 35 patients who underwent robotic SPSHL(RSPSHL)and 608 who underwent laparoscopic SPSHL(LSPSHL).One-to-four propensity score matching was used to analyze the differences in clinical data between patients who underwent robotic SPSHL and those who underwent laparoscopic SPSHL.RESULTS In all,175 patients were matched,including 35 patients who underwent RSPSHL and 140 who underwent LSPSHL.After matching,there were no significant differences detected in the baseline characteristics between the two groups.Significant differences in total operative time,estimated blood loss(EBL),splenic hilar blood loss(SHBL),splenic hilar dissection time(SHDT),and splenic trunk dissection time were evident between these groups(P<0.05).Furthermore,no significant differences were observed between the two groups in the overall noncompliance rate of lymph node(LN)dissection(62.9%vs 60%,P=0.757),number of retrieved No.10 LNs(3.1±1.4 vs 3.3±2.5,P=0.650),total number of examined LNs(37.8±13.1 vs 40.6±13.6,P=0.274),and postoperative complications(14.3%vs 17.9%,P=0.616).A stratified analysis that divided the patients receiving RSPSHL into an early group(EG)and a late group(LG)revealed that the LG experienced obvious improvements in SHDT and length of stay compared with the EG(P<0.05).Logistic regression showed that robotic surgery was a significantly protective factor against both SHBL and SHDT(P<0.05).CONCLUSION RSPSHL is safe and feasible,especially after overcoming the early learning curve,as this procedure results in a radical curative effect equivalent to that of LSPSHL.
基金Project supported by the National Natural Science Foundation of China (No.10472061)
文摘An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.
基金supported by the Science Fund of Anhui Province,China(Grant No 070414187)the National Fund for Fostering Talents in Basic Science of China(Grant No J0630319/J0103)
文摘The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step method. On thin buffer films of SiO2, which were first fabricated on glass substrates by the so,gel dip-coating method, a ZnO seed layer was deposited via RF magnetron sputtering. Then two different ZnO films, micro-nano and micro-only flowerlike structures, were grown by the hydrothermal method. The prepared films have different hydrophobic properties after surface modification. The structures of the obtained ZnO films were characterized using x-ray diffraction and field-emission scanning electron microscopy. A conclusion that a micro-nano composite structure is more beneficial to hydrophobicity than a micro-only structure was obtained through research into the effect of structure on hydrophobic properties.
文摘As early as 1983,Sjaastad proposed the concept of cervicogenic headache(CH)in the World Headache Conference,that is,the pain from upper cervical joints and muscles can be referred to the head.CH is a group of syndromes mainly caused by dysfunction of the upper cervical spine and its component muscles,ligaments,bony,vertebral arteries and/or soft tissue elements,usually not accompanied by neck pain.Therefore,the treatment strategy of CH focuses on pain relief and repair cervical lesions.Patients with painful disorders of upper cervical zygapophysial joints showed significant headache relief after directly treated at disordered cervical joints[1].
基金the Ministry of Science and Technology of China for the National Basic Research Program of China(973 Program,Grant No.2011CB309704)
文摘In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog(LF) scheme and the complete square conservation difference(CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration(RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error(RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite difference scheme for solving nonlinear equations.
文摘First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setting. Let H be a real Hilbert space and K be a nonempty closed convex subset of H. For arbitrarily chosen initial points x0, y0, z0 ∈ K, compute sequences xn, yn, zn such thatT : K→ H is a nonlinear mapping onto K. At last three-step models are applied to some variational inequality problems.
文摘In this letter, an improved three-step search algorithm is presented, which uses both gray and chromatic information to boost the performance with random optimization and converge the motion vectors to global optima. Experimental results show that this algorithm can efficiently improve the PSNR after motion compensation.
基金supported by a grant from Beijing Municipal Administration of Hospitals’Mission Plan(SML 20152201)
文摘Pancreatic head carcinoma is characterized by high malignancy and a low survival rate and its mortality ranks fourth for malignant tumors with a 5-year survival rate of only 5%[1].Treatment of this cancer relies on surgical resection.However,the resection rate is only about 20%,because majority of the patients are classified as unresectable when diagnosed due to distant metastasis or
基金supported by National Natural Science Foundation of China(Grant Nos. 11176024, 51035007)National Basic Research Program of China(973 Program, Grant No. 2011CB706805)Open Research Fund Program of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, China
文摘Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A three-step-meshing method for the multiple cracks identification in structures is presented. Firstly, the changes in natural frequency of a structure with various crack locations and depth are accurately obtained by means of wavelet finite element method, and then the damage coefficient method is used to determine the number and the region of cracks. Secondly, different regions in the cracked structure are divided into meshes with different scales, and then the small unit containing cracks in the damaged area is gradually located by iterative computation. Lastly, by finding the points of intersection of three frequency contour lines in the small unit, the crack location and depth are identified. In order to verify the effectiveness of the presented method, a multiple cracks identification experiment is carried out. The diagnostic tests on a cantilever beam under two working conditions show the accuracy of the proposed method: with a maximum error of crack location identification 2.7% and of depth identification 5.2%. The method is able to detect multiple crack of beam with less subdivision and higher precision, and can be developed as a multiple crack detection approach for complicated structures.
基金The author is thankful to the National Science Foundation of China for support through Grant 10171118
文摘The purpose of this paper is to investigate some sufficient and necessary conditions for three-step Ishikawa iterative sequences with error terms for uniformly quasi-Lipschitzian mappings to converge to fixed points. Our results extend and improve the recent ones announced by Liu [3,4], Xu and Noor [5], and many others.
基金National Natural Science Fund of China(51379015)Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China(2013-46)+3 种基金Humanity and Social Science Foundation of Ministry of Education of China(15YJC790015)Shaanxi Research Fund(2013KW13-01,13D231)Xi’an Social Science Fund(15J24)the Central Universities Fund(2014G2280013,2014G6285067)
文摘Under the context of the New Three-step strategy of Chinese economic development, we use the reverse tracing method and petroleum, natural gas and coal as sources of carbon emissions. To eliminate the impact of regional and technological levels in the energy conversion process we improved the IPAT model and used it to predict and analyze China’s per capita carbon emissions in three assumed scenarios up to 2050. We found that China’s per capita carbon emissions peak wil occur respectively in 2020 and 2030 in different assumed scenarios; national per capita carbon emissions wil reach 2.0127–2.6791 tons; China’s per capita carbon emissions wil grow continuously at an average rate of 2.25%–3.40% per year before the peak year and then wil decline at a rate of 1.33%–1.78% per year. By the year of 2050, national per capita carbon emissions wil be 1.3147–1.8817 tons.
文摘Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.
文摘In this paper, we suggest and analyse a three-step iterative scheme with errors for solving nonlinear strongly accretive operator equation Tx = f without the Lipshitz condition. The results presented in this paper improve and extend current results in the more general setting.
基金supported by the Major Research Plan of the National Nat-ural Science Foundation of China(Grant No.91123030)the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)the National Natural Science Foundation of China(Grant No.61378083)
文摘The porous anodic alumina membranes (PAAMs) have been successfully used as templates for the fabrication of functional nano-materials due to their outstanding regularity and physicochemical properties. In this paper, a transparent double-sided anodic alumina membrane with ultra-thin aluminum substrate was fabricated with the three-step anodic oxidation method in the oxalic acid electrolyte. The characters such as the top-surface morphology, membrane thickness, and depth of nanopores of this three-layer (A1203-A1-A1203) sandwiched nano-structure were controllable through regulating the main anodic oxidation conditions, e.g., anodic oxidation time of various steps, coating remove process. The experiments data revealed that the aluminum substrate is exponential declined with the oxidation time when it was approximately reduced by a few micrometers. This new double-sided anodic alumina membrane can be used as the high-quality functional field emission materials and templates.
基金Project supported by the National Natural Science Foundation of China (No.51078230)the Research Fund for the Doctoral Program of Higher Education of China (No.200802480056)the Key Project of Fund of Science and Technology Development of Shanghai (No.10JC1407900),China
文摘A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory.
基金supported by the National Natural Science Foundation of China (61834005, 61772417, 61602377, 61634004,61802304)the Shaanxi Province Key R&D Plan (2021GY-029)。
文摘In order to solve the hole-filling mismatch problem in virtual view synthesis, a three-step repairing(TSR) algorithm was proposed. Firstly, the image with marked holes is decomposed by the non-subsampled shear wave transform(NSST), which will generate high-/low-frequency sub-images with different resolutions. Then the improved Criminisi algorithm was used to repair the texture information in the high-frequency sub-images, while the improved curvature driven diffusion(CDD) algorithm was used to repair the low-frequency sub-images with the image structure information. Finally, the repaired parts of high-frequency and low-frequency sub-images are synthesized to obtain the final image through inverse NSST. Experiments show that the peak signal-to-noise ratio(PSNR) of the TSR algorithm is improved by an average of 2-3 dB and 1-2 dB compared with the Criminisi algorithm and the nearest neighbor interpolation(NNI) algorithm, respectively.