The prevalence of obesity has increased and is a health concern worldwide.Due to the concerns regarding synthetic anti-obesity treatments,nowadays natural products become a trend.Previous studies proved that there is ...The prevalence of obesity has increased and is a health concern worldwide.Due to the concerns regarding synthetic anti-obesity treatments,nowadays natural products become a trend.Previous studies proved that there is a potential to use marine algae as anti-obesity agents.Therefore,in this study,the lipid inhibitory effect of crude polysaccharide of amyloglucosidase-assisted hydrolysate from Sargassum thunbergii(STAC)and its fucoidan fractions(STAFs)on 3T3-L1 cells and high-fat diet(HFD)-induced obese mice were investigated.According to the results,the STAF3,showed the highest xylose content and exhibited significant inhibitory effects on lipid accumulation by downregulating adipogenic and lipogenic proteins in 3T3-L1 cells.Furthermore,oral supplementation with STAC significantly declined gain in body weight and fat weight,and serum lipid contents in an HFD-induced obesity mouse model.Structural and chemical characterizations demonstrated that puritied STAF3 has consistent surface morphology and small particle size,with similar structural characteristics as commercial fucoidan.Together,these results indicate that STAC and purified STAF3 from Sargassum thunbergia is a potent source to develop as ananti-obesity agents or functional food products to counter obesity.展开更多
Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunb...Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunbergii and appraised their LMPST on palmitic acid(PA)induced lipid accretion in Hep G2,and 3T3-L1 cells.LMPST treatment lessened lipid deposition and intracellular free fatty acid and triglyceride intensities in PA-treated above mentioned cells.The mechanistic study publicized that LMPST2 significantly suppressed adipogenesis and stimulated the PA-treated 3T3-L1 cells occupied in the lipolysis pathway.Furthermore,in PA-treated Hep G2 cells,the free fatty acid oxidation was significantly increased by LMPST2.Given these constructive properties of LMPST2 from S.thunbergii,is a potential candidate for diminishing the intracellular lipids,and for a therapeutic agent in those conditions.展开更多
[Objectives]This study was conducted to screen suitable seed stems of Fritillaria thunbergii Miq.from different provenances and to provide a theoretical basis for the high-yielding and high-efficiency cultivation of F...[Objectives]This study was conducted to screen suitable seed stems of Fritillaria thunbergii Miq.from different provenances and to provide a theoretical basis for the high-yielding and high-efficiency cultivation of F.thunbergii Miq.introduced to different places.[Methods]F.thunbergii Miq.from four different provenances including Zhejiang,Nantong and Chongqing were introduced and cultivated in Wanzhou of Chongqing.The contents of available Zn,Fe,Mn,Cu,Mo,N,P,K,Ca and Mg in rhizosphere soil of F.thunbergii Miq.during five growing stages were determined after selecting different stem sizes for field cultivation.[Results]Small stems of Pan an and Ningbo provenances(SSG3,121-160/kg)and middle stems of Nantong and Fengjie provenances(SSG2,81-120/kg)showed higher soil availability.[Conclusions]In the process of introduction and cultivation of F.thunbergii Miq.,high yield and high efficiency can be achieved by selecting smaller seed stems of F.thunbergii Miq.展开更多
Aim Isolation and structural elucidation of the constituents from the aerial part of Vitis thunbergii . Methods To isolate chemical constituents, column chromatography and HPLC were used. Physico chemical ...Aim Isolation and structural elucidation of the constituents from the aerial part of Vitis thunbergii . Methods To isolate chemical constituents, column chromatography and HPLC were used. Physico chemical characterization and spectroscopic analysis were employed for structural identification. Results Eleven polyphenols were isolated and identified. Conclusion Compound 1 is a new compound and its structure was characterized to be 3,5 dimethoxyl 4 hydroxyl phenylpropanol 9 O β D glycopyranoside.展开更多
Artificial seedling production of Sargassum thunbergii is an effective way to relieve pressure on natural resources.In order to improve the utilization of zygotes and reduce the loss of seedlings,studies on the charac...Artificial seedling production of Sargassum thunbergii is an effective way to relieve pressure on natural resources.In order to improve the utilization of zygotes and reduce the loss of seedlings,studies on the characteristic of the zygotes release,the development of rhizoids,the attachment of germlings,and the influence of jet washing were conducted.Results show that the percent of zygotes released was increased with time in the first 60 h.The capacity of germlings attached to the substratum was significantly increased,especially coincident with the time of the new rhizoids emerged and elongated.The detachment rate of germlings significantly decreased with the delay of starting time of jet washing or the reduction of jet washing velocity.However,the jet washing at any level applied in the experiment could cause considerable loss of germlings within the 20 days after the attachment.Our study provided some parameters to optimize the operation in the early stage of seedling production.展开更多
Low-energy ion implantation, as a new technology to produce mutation in plant breeding, has been widely applied in agriculture in China. But so far there is a little understanding of the underlying mechanisms responsi...Low-energy ion implantation, as a new technology to produce mutation in plant breeding, has been widely applied in agriculture in China. But so far there is a little understanding of the underlying mechanisms responsible for its biological effects at the cellular level. Here we report the biological effects of a nitrogen ion beams of 30 keV on the pollen grains of Pinus thunbergii Parl. In general, ion implantation inhibited pollen germination. The dose-response curve presented a particular saddle-like pattern. Ion implantation also changed the dimension of the elongated tubes and significantly induced tip swelling. Confocal microscopy indicated that the pollen tube tips in P. thunbergii contained an enriched network of microtubules. Ion implantation led to the disruption of microtubules especially in swollen tips. Treatment with colchicine demonstrated that tip swelling was caused by the disruption of microtubules in the tip, indicating a unique role for microtubules in maintaining the tip integrality of the pollen tube in conifer. Our results suggest that ion implantation induce the disruption of microtubule organization in pollen and pollen tubes and subsequently cause morphological abnormalities in the pollen tubes. This study may provide a clue for further investigation on the interaction between low-energy ion beams and pollen tube growth.展开更多
Pine wilt disease (PWD), which is caused by pine wood nematodes (PWN), is one of the most serious forest diseases worldwide. To clarify the mechanism of resistance to PWD, we compared metabolites from resistant and su...Pine wilt disease (PWD), which is caused by pine wood nematodes (PWN), is one of the most serious forest diseases worldwide. To clarify the mechanism of resistance to PWD, we compared metabolites from resistant and susceptible Japanese black pine (Pinus thunbergii) families after inoculation with PWN. After 2 weeks to 1 month post inoculation, the number of PWN dramatically increased in susceptible plants, but not in resistant plants. At this PWN-proliferation phase, ethyl acetate soluble fractions extracted from PWN-inoculated plants were analyzed by gas chromatogramphy-mass spectrometry (GC-MS). Although most compounds were qualitatively and quantitatively similar between resistant and susceptible plants, resistant plants accumulated 2.0-fold more linoleic acid (LA) than susceptible plants. On the other hand, benzoic acid (BA) was barely detected in resistant plants, but it accumulated in susceptible plants as the number of PWN increased. Susceptible plants contained greater levels of the nematicidal compounds pinosylvin and pinosylvin monomethyl ether, compared with resistant plants. These results suggested that LA is involved in the resistance reaction against PWN-proliferation, and that BA could be a good biomarker for PWD.展开更多
Ficus (Moraceae) is a well-known group with specific pollination mutualisms, and hybridization is considered to be rare. Here, we report the presence of interspecific hybrids between Ficus pumila L. and F. thunbergii ...Ficus (Moraceae) is a well-known group with specific pollination mutualisms, and hybridization is considered to be rare. Here, we report the presence of interspecific hybrids between Ficus pumila L. and F. thunbergii Maxim. on Okinoshima, a small island offshore of Shikoku, western Japan. AFLP (amplified fragment length polymorphism of genomic DNA) data suggested that more than one-fourth of individuals of morphological F. pumila were assigned as intermediate genotypes, suggesting hybrids. The hybridization between the two species was introgressive and unidirectional from F. thunbergii to F. pumila. The findings of this study, combined with other previous reports, suggest that the breakdown of mutualistic systems can occur in isolated populations such as those on islands.展开更多
Ultrasonic extraction conditions of polyphenols from the needles of black pine(Pinus thunbergii) were optimized by single factors analysis and Box-Behnken experiment design. The results showed that both of ethanol con...Ultrasonic extraction conditions of polyphenols from the needles of black pine(Pinus thunbergii) were optimized by single factors analysis and Box-Behnken experiment design. The results showed that both of ethanol concentration and ultrasonic time had a significant effect on polyphenol extraction, and there was significant interaction between any two variables in the three parameters of ethanol concentration, ultrasonic temperature and ultrasonic time. The optimal parameters for polyphenol extraction were the ethanol concentration of 52.67%, ultrasonic temperature at 49.21 ℃and ultrasonic time of 30.76 min. Under these conditions, the actual content of polyphenols was close to the predicted value. Therefore, the process can be used to extract polyphenols from black pine needles.展开更多
Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to dif ferent concentrations(0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc(Zn) and cadmium(Cd)...Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to dif ferent concentrations(0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc(Zn) and cadmium(Cd) exposure separately were studied for 15 days in laboratory-controlled conditions. The results show that the specifi c growth rates increased slightly under the lower Zn concentration treatment(0.1 mg/L) at the first 5 d and then decreased gradually, which were significantly reduced with the exposure time in higher Zn concentrations and all Cd treatments compared to respective control, especially for 1.0 and 5.0 mg/L Cd. Chlorophyll a contents showed significant increase in 0.1 mg/L Zn treatment, whereas the gradually reduction were observed in the other three Zn treatments and all Cd treatments. The oxygen evolution rate and respiration rate presented distinct behavior in the Zn-treated samples, but both declined steadily with the exposure time in Cd treatments. The P/R value analyses showed similar variation patterns as chlorophyll a contents. Real-time PCR showed that lower Zn concentration(0.1 mg/L) increased mRNA expression of rbcL gene, whereas higher Zn concentrations and Cd reduced the rbcL expression. Taken together, these findings strongly indicate that Zn and Cd had different effects on S. thunbergii both at the physiological and gene transcription levels, the transcript level of photosynthesis-related gene rbcL can be used as an useful molecular marker of algal growth and environment impacts.展开更多
This study was carried out to determine the performance of percentile-based Weibull diameter distribution model for Pinus thunbergii stands thriving along the eastern coast of South Korea. The parameter recovery techn...This study was carried out to determine the performance of percentile-based Weibull diameter distribution model for Pinus thunbergii stands thriving along the eastern coast of South Korea. The parameter recovery technique was used to estimate the three parameters of the Weibull model. The analysis demonstrated satisfactory results based on the following test statistics for the principal percentile models: fit index (FI) range from 0.501(minimum diameter) to 0.932 (50th diameter percentiles) and root mean square error (RMSE) range from 0.112 (quadratic mean diameter) to 3.572 (minimum diameter). The developed model was further evaluated by determining the mean bias (E) in trees per ha (TPH) for each diameter class, and the results showed highest over-prediction in the 20 cm, and under-prediction in the x6 cm and 24 cm diameter classes. The goodness of fit tested by Kolmogorov- Smirnov (KS) test showed no significant differences (P〉0.05) between the observed and predicted diameter distributions for almost all plots. Using site index and aboveground biomass (AGB) models developed for P. thunbergii in South Korea, a model to predict the AGB per ha for each diameter class and subsequently the total AGB of the stand was created. An application guide was also created, which will serve as a decision-support tool for forest managers in quantifying the future total AGB in P. thunbergii stands located in the eastern coast of South Korea and, subsequently, the quantification of potential carbon stocks aside from being a vital input in designing efficient management and protection strategies for these stands.展开更多
The potential geographic distribution and favorable climatic conditions of Machilus thunbergii under current and future predicted climates in China are predicted based on MaxEnt model and ArcGIS software. The results ...The potential geographic distribution and favorable climatic conditions of Machilus thunbergii under current and future predicted climates in China are predicted based on MaxEnt model and ArcGIS software. The results show that the AUC values in different time periods and emission seniors are more than 0.9, which indicates the prediction is excellent. Precipitation of the coldest quarter, precipitation of the driest month, annual precipitation, mean diurnal range, and temperature annual range are the most important environmental factors affecting the distribution of Machilus thunbergii. At present, the suitable areas of Machilus thunbergii are mainly concentrated in the eastern subtropics of China, with a total area of 118.47 × 104 km2. The medium-suitability area and the high-suitability area are concentrated in Wuyi Mountains, Luoxiao Mountains, Xuefeng Mountains, Nanling and east of Taiwan Mountains. With the change of climate, the suitable area increases, and the medium-suitability area and high-suitability area migrate and expand to the east, and the low-suitability area expands slightly to the west and north. So, the simulated distribution of Machilus thunbergii should be one of priorities, when instigating in-situ conservation. The research results can provide a theoretical reference for the popularization and planting of Machilus thunbergii.展开更多
Pollen grains of Pinus thunbergii Parl. (Japanese black pine) were implanted with 30 keV nitrogen ion beams and the effects of nitrogen ion implantation on pollen tube growth in vitro and the organization of actin c...Pollen grains of Pinus thunbergii Parl. (Japanese black pine) were implanted with 30 keV nitrogen ion beams and the effects of nitrogen ion implantation on pollen tube growth in vitro and the organization of actin cytoskeleton in the pollen tube cell were investigated using a confocal laser scanning microscope after fluorescence labeling. Treatment with ion implantation significantly blocked pollen tube growth. Confocal microscopy showed that ion implantation disrupted actin filament cytoskeleton organization in the pollen tube. It was found that there was a distinct correlation between the inhibition of pollen tube growth and the disruption of actin cytoskeleton organization, indicating that an intact actin cytoskeleton is essential for continuous pollen tube elongation in Pinus thunbergii. Although the detailed mechanism for the ion-implantation-induced bioeffect still remains to be elucidated, the present study assumes that the cytoskeleton system in pollen grains may provide a key target in response to ion beam implantation and is involved in mediating certain subsequent cytological changes.展开更多
We conducted a phenological evaluation of Sargassum thunbergii, a common algal species, along the coast of Lidao Bay, Rongcheng, China. The local S. thunbergii population entered a maturation period from early June to...We conducted a phenological evaluation of Sargassum thunbergii, a common algal species, along the coast of Lidao Bay, Rongcheng, China. The local S. thunbergii population entered a maturation period from early June to mid-August, when seawater temperature was 14.4 to 25. 1℃. Our results suggest an increase in temperatttre and day length during this period initiated thalli maturation. Inhabitants of the low tidal zone had higher thalli length and biomass compared with those from the mid- and high tidal zones. We observed a switch in the length frequency distribution and contribution of length classes to biomass between the small (〈20 cm) and long (20-79.9 cm) length classes at the time of thallus maturity. This suggests there is a trade-off between sexual reproduction and vegetative regeneration.展开更多
Sargassum thunbergii is of great economic and ecological value to sea cucumber cultures and seaweed beds. However, studies on photosynthesis and respiration of S. thunbergii are limited. In this study, a liquid-phase ...Sargassum thunbergii is of great economic and ecological value to sea cucumber cultures and seaweed beds. However, studies on photosynthesis and respiration of S. thunbergii are limited. In this study, a liquid-phase oxygen electrode system and a chlorophyll fluorescence spectrometer were used to determine the photosynthetic characteristics of S. thunbergii seedlings at various light intensities, temperatures, and salinities. The light-saturated net photosynthetic rates, light saturation points, and respiratory rates of germlings were investigated. Results showed that the increase in rate of light saturation point was slow in the first 4 d, rapidly increased from 5 d to 9 d, and then gently increased at the final few days of the 15 d indoor culture period. The photosynthetic rate or respiratory rate of the seedlings rapidly and significantly decreased when the temperature was °C or >28°C. Short-term high- or low-salinity shock had significant effect on the photosynthetic and respiratory rates of the seedlings, specifically at 10 and 50 psu. However, the photosynthetic and respiratory rates recovered to the normal levels after 24 h of recovery period, which demonstrated a powerful ion-transport system of the seedlings. These results provided reference for the artificial breeding of S. thunbergii.展开更多
基金The“Basic Science Research Program”extended its support via the National Research Foundation of Korea (NRF),which is sponsored through the Ministry of Education (2018R1C1B6004780)supported by Main Research Program (E0211200-03)of the Korea Food Research Institute (KFRI)funded by the Ministry of Science and ICT。
文摘The prevalence of obesity has increased and is a health concern worldwide.Due to the concerns regarding synthetic anti-obesity treatments,nowadays natural products become a trend.Previous studies proved that there is a potential to use marine algae as anti-obesity agents.Therefore,in this study,the lipid inhibitory effect of crude polysaccharide of amyloglucosidase-assisted hydrolysate from Sargassum thunbergii(STAC)and its fucoidan fractions(STAFs)on 3T3-L1 cells and high-fat diet(HFD)-induced obese mice were investigated.According to the results,the STAF3,showed the highest xylose content and exhibited significant inhibitory effects on lipid accumulation by downregulating adipogenic and lipogenic proteins in 3T3-L1 cells.Furthermore,oral supplementation with STAC significantly declined gain in body weight and fat weight,and serum lipid contents in an HFD-induced obesity mouse model.Structural and chemical characterizations demonstrated that puritied STAF3 has consistent surface morphology and small particle size,with similar structural characteristics as commercial fucoidan.Together,these results indicate that STAC and purified STAF3 from Sargassum thunbergia is a potent source to develop as ananti-obesity agents or functional food products to counter obesity.
基金supported by Korea Institute of Marine Science&Technology Promotion(KIMST)funded by the Ministry of Oceans and Fisheries,Korea(20220488)。
文摘Low molecular weight polysaccharides can be isolated from Sargassum thunbergii(LMPST)and in vitro experiments were conducted to evaluate the inhibitory effects on lipids.Two natures of LMPST were attained from S.thunbergii and appraised their LMPST on palmitic acid(PA)induced lipid accretion in Hep G2,and 3T3-L1 cells.LMPST treatment lessened lipid deposition and intracellular free fatty acid and triglyceride intensities in PA-treated above mentioned cells.The mechanistic study publicized that LMPST2 significantly suppressed adipogenesis and stimulated the PA-treated 3T3-L1 cells occupied in the lipolysis pathway.Furthermore,in PA-treated Hep G2 cells,the free fatty acid oxidation was significantly increased by LMPST2.Given these constructive properties of LMPST2 from S.thunbergii,is a potential candidate for diminishing the intracellular lipids,and for a therapeutic agent in those conditions.
基金Supported by Technological Innovation and Application Demonstration Project of Chongqing City(cstc2018jscx-msybX0367).
文摘[Objectives]This study was conducted to screen suitable seed stems of Fritillaria thunbergii Miq.from different provenances and to provide a theoretical basis for the high-yielding and high-efficiency cultivation of F.thunbergii Miq.introduced to different places.[Methods]F.thunbergii Miq.from four different provenances including Zhejiang,Nantong and Chongqing were introduced and cultivated in Wanzhou of Chongqing.The contents of available Zn,Fe,Mn,Cu,Mo,N,P,K,Ca and Mg in rhizosphere soil of F.thunbergii Miq.during five growing stages were determined after selecting different stem sizes for field cultivation.[Results]Small stems of Pan an and Ningbo provenances(SSG3,121-160/kg)and middle stems of Nantong and Fengjie provenances(SSG2,81-120/kg)showed higher soil availability.[Conclusions]In the process of introduction and cultivation of F.thunbergii Miq.,high yield and high efficiency can be achieved by selecting smaller seed stems of F.thunbergii Miq.
文摘Aim Isolation and structural elucidation of the constituents from the aerial part of Vitis thunbergii . Methods To isolate chemical constituents, column chromatography and HPLC were used. Physico chemical characterization and spectroscopic analysis were employed for structural identification. Results Eleven polyphenols were isolated and identified. Conclusion Compound 1 is a new compound and its structure was characterized to be 3,5 dimethoxyl 4 hydroxyl phenylpropanol 9 O β D glycopyranoside.
基金Supported by the Public Science and Technology Research Funds Projects of Ocean(Nos.201305021,201305043,201305005,201405040)the National Natural Science Foundation of China(No.41376129)the Scientific Funds for Outstanding Young Scientists of Shandong Province Award(No.BS2012HZ013)
文摘Artificial seedling production of Sargassum thunbergii is an effective way to relieve pressure on natural resources.In order to improve the utilization of zygotes and reduce the loss of seedlings,studies on the characteristic of the zygotes release,the development of rhizoids,the attachment of germlings,and the influence of jet washing were conducted.Results show that the percent of zygotes released was increased with time in the first 60 h.The capacity of germlings attached to the substratum was significantly increased,especially coincident with the time of the new rhizoids emerged and elongated.The detachment rate of germlings significantly decreased with the delay of starting time of jet washing or the reduction of jet washing velocity.However,the jet washing at any level applied in the experiment could cause considerable loss of germlings within the 20 days after the attachment.Our study provided some parameters to optimize the operation in the early stage of seedling production.
基金supported by National Key Project of China (No. 2001BA302B)
文摘Low-energy ion implantation, as a new technology to produce mutation in plant breeding, has been widely applied in agriculture in China. But so far there is a little understanding of the underlying mechanisms responsible for its biological effects at the cellular level. Here we report the biological effects of a nitrogen ion beams of 30 keV on the pollen grains of Pinus thunbergii Parl. In general, ion implantation inhibited pollen germination. The dose-response curve presented a particular saddle-like pattern. Ion implantation also changed the dimension of the elongated tubes and significantly induced tip swelling. Confocal microscopy indicated that the pollen tube tips in P. thunbergii contained an enriched network of microtubules. Ion implantation led to the disruption of microtubules especially in swollen tips. Treatment with colchicine demonstrated that tip swelling was caused by the disruption of microtubules in the tip, indicating a unique role for microtubules in maintaining the tip integrality of the pollen tube in conifer. Our results suggest that ion implantation induce the disruption of microtubule organization in pollen and pollen tubes and subsequently cause morphological abnormalities in the pollen tubes. This study may provide a clue for further investigation on the interaction between low-energy ion beams and pollen tube growth.
文摘Pine wilt disease (PWD), which is caused by pine wood nematodes (PWN), is one of the most serious forest diseases worldwide. To clarify the mechanism of resistance to PWD, we compared metabolites from resistant and susceptible Japanese black pine (Pinus thunbergii) families after inoculation with PWN. After 2 weeks to 1 month post inoculation, the number of PWN dramatically increased in susceptible plants, but not in resistant plants. At this PWN-proliferation phase, ethyl acetate soluble fractions extracted from PWN-inoculated plants were analyzed by gas chromatogramphy-mass spectrometry (GC-MS). Although most compounds were qualitatively and quantitatively similar between resistant and susceptible plants, resistant plants accumulated 2.0-fold more linoleic acid (LA) than susceptible plants. On the other hand, benzoic acid (BA) was barely detected in resistant plants, but it accumulated in susceptible plants as the number of PWN increased. Susceptible plants contained greater levels of the nematicidal compounds pinosylvin and pinosylvin monomethyl ether, compared with resistant plants. These results suggested that LA is involved in the resistance reaction against PWN-proliferation, and that BA could be a good biomarker for PWD.
文摘Ficus (Moraceae) is a well-known group with specific pollination mutualisms, and hybridization is considered to be rare. Here, we report the presence of interspecific hybrids between Ficus pumila L. and F. thunbergii Maxim. on Okinoshima, a small island offshore of Shikoku, western Japan. AFLP (amplified fragment length polymorphism of genomic DNA) data suggested that more than one-fourth of individuals of morphological F. pumila were assigned as intermediate genotypes, suggesting hybrids. The hybridization between the two species was introgressive and unidirectional from F. thunbergii to F. pumila. The findings of this study, combined with other previous reports, suggest that the breakdown of mutualistic systems can occur in isolated populations such as those on islands.
基金Supported by the Policy Guidance Plan of Jiangsu Province(Production and Research Cooperation)(BY2016061-27)National Spark Program(2015GA690284)College Students' Practice Innovation Training Program of Jiangsu Province(201711049094X,201811049048X)
文摘Ultrasonic extraction conditions of polyphenols from the needles of black pine(Pinus thunbergii) were optimized by single factors analysis and Box-Behnken experiment design. The results showed that both of ethanol concentration and ultrasonic time had a significant effect on polyphenol extraction, and there was significant interaction between any two variables in the three parameters of ethanol concentration, ultrasonic temperature and ultrasonic time. The optimal parameters for polyphenol extraction were the ethanol concentration of 52.67%, ultrasonic temperature at 49.21 ℃and ultrasonic time of 30.76 min. Under these conditions, the actual content of polyphenols was close to the predicted value. Therefore, the process can be used to extract polyphenols from black pine needles.
基金Supported by the National Natural Science Foundation of China(No.41306122)the National Special Research Fund for Non-Profit Marine Sector(Nos.201405040,201505022)+1 种基金the Scientific Funds for Outstanding Young Scientists of Shandong Province Award(No.BS2012HZ013)the Shandong Agricultural Application Technology Innovation of Research Project
文摘Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to dif ferent concentrations(0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc(Zn) and cadmium(Cd) exposure separately were studied for 15 days in laboratory-controlled conditions. The results show that the specifi c growth rates increased slightly under the lower Zn concentration treatment(0.1 mg/L) at the first 5 d and then decreased gradually, which were significantly reduced with the exposure time in higher Zn concentrations and all Cd treatments compared to respective control, especially for 1.0 and 5.0 mg/L Cd. Chlorophyll a contents showed significant increase in 0.1 mg/L Zn treatment, whereas the gradually reduction were observed in the other three Zn treatments and all Cd treatments. The oxygen evolution rate and respiration rate presented distinct behavior in the Zn-treated samples, but both declined steadily with the exposure time in Cd treatments. The P/R value analyses showed similar variation patterns as chlorophyll a contents. Real-time PCR showed that lower Zn concentration(0.1 mg/L) increased mRNA expression of rbcL gene, whereas higher Zn concentrations and Cd reduced the rbcL expression. Taken together, these findings strongly indicate that Zn and Cd had different effects on S. thunbergii both at the physiological and gene transcription levels, the transcript level of photosynthesis-related gene rbcL can be used as an useful molecular marker of algal growth and environment impacts.
基金support from the Forest Science and Technology Projects(Project No.S211415L010140)provided by the Korea Forest Service
文摘This study was carried out to determine the performance of percentile-based Weibull diameter distribution model for Pinus thunbergii stands thriving along the eastern coast of South Korea. The parameter recovery technique was used to estimate the three parameters of the Weibull model. The analysis demonstrated satisfactory results based on the following test statistics for the principal percentile models: fit index (FI) range from 0.501(minimum diameter) to 0.932 (50th diameter percentiles) and root mean square error (RMSE) range from 0.112 (quadratic mean diameter) to 3.572 (minimum diameter). The developed model was further evaluated by determining the mean bias (E) in trees per ha (TPH) for each diameter class, and the results showed highest over-prediction in the 20 cm, and under-prediction in the x6 cm and 24 cm diameter classes. The goodness of fit tested by Kolmogorov- Smirnov (KS) test showed no significant differences (P〉0.05) between the observed and predicted diameter distributions for almost all plots. Using site index and aboveground biomass (AGB) models developed for P. thunbergii in South Korea, a model to predict the AGB per ha for each diameter class and subsequently the total AGB of the stand was created. An application guide was also created, which will serve as a decision-support tool for forest managers in quantifying the future total AGB in P. thunbergii stands located in the eastern coast of South Korea and, subsequently, the quantification of potential carbon stocks aside from being a vital input in designing efficient management and protection strategies for these stands.
文摘The potential geographic distribution and favorable climatic conditions of Machilus thunbergii under current and future predicted climates in China are predicted based on MaxEnt model and ArcGIS software. The results show that the AUC values in different time periods and emission seniors are more than 0.9, which indicates the prediction is excellent. Precipitation of the coldest quarter, precipitation of the driest month, annual precipitation, mean diurnal range, and temperature annual range are the most important environmental factors affecting the distribution of Machilus thunbergii. At present, the suitable areas of Machilus thunbergii are mainly concentrated in the eastern subtropics of China, with a total area of 118.47 × 104 km2. The medium-suitability area and the high-suitability area are concentrated in Wuyi Mountains, Luoxiao Mountains, Xuefeng Mountains, Nanling and east of Taiwan Mountains. With the change of climate, the suitable area increases, and the medium-suitability area and high-suitability area migrate and expand to the east, and the low-suitability area expands slightly to the west and north. So, the simulated distribution of Machilus thunbergii should be one of priorities, when instigating in-situ conservation. The research results can provide a theoretical reference for the popularization and planting of Machilus thunbergii.
基金National Science Foundation of Fujian Province of China(No.B0610031)Science and Technology Program of Put-Jan Municipality of China(No.2006N17)
文摘Pollen grains of Pinus thunbergii Parl. (Japanese black pine) were implanted with 30 keV nitrogen ion beams and the effects of nitrogen ion implantation on pollen tube growth in vitro and the organization of actin cytoskeleton in the pollen tube cell were investigated using a confocal laser scanning microscope after fluorescence labeling. Treatment with ion implantation significantly blocked pollen tube growth. Confocal microscopy showed that ion implantation disrupted actin filament cytoskeleton organization in the pollen tube. It was found that there was a distinct correlation between the inhibition of pollen tube growth and the disruption of actin cytoskeleton organization, indicating that an intact actin cytoskeleton is essential for continuous pollen tube elongation in Pinus thunbergii. Although the detailed mechanism for the ion-implantation-induced bioeffect still remains to be elucidated, the present study assumes that the cytoskeleton system in pollen grains may provide a key target in response to ion beam implantation and is involved in mediating certain subsequent cytological changes.
基金Supported by the National Special Research Fund for Non-Profit Marine Sector(Nos.201305021,201305043,201305005,201405040)the National Natural Science Foundation of China(No.41376129)
文摘We conducted a phenological evaluation of Sargassum thunbergii, a common algal species, along the coast of Lidao Bay, Rongcheng, China. The local S. thunbergii population entered a maturation period from early June to mid-August, when seawater temperature was 14.4 to 25. 1℃. Our results suggest an increase in temperatttre and day length during this period initiated thalli maturation. Inhabitants of the low tidal zone had higher thalli length and biomass compared with those from the mid- and high tidal zones. We observed a switch in the length frequency distribution and contribution of length classes to biomass between the small (〈20 cm) and long (20-79.9 cm) length classes at the time of thallus maturity. This suggests there is a trade-off between sexual reproduction and vegetative regeneration.
文摘Sargassum thunbergii is of great economic and ecological value to sea cucumber cultures and seaweed beds. However, studies on photosynthesis and respiration of S. thunbergii are limited. In this study, a liquid-phase oxygen electrode system and a chlorophyll fluorescence spectrometer were used to determine the photosynthetic characteristics of S. thunbergii seedlings at various light intensities, temperatures, and salinities. The light-saturated net photosynthetic rates, light saturation points, and respiratory rates of germlings were investigated. Results showed that the increase in rate of light saturation point was slow in the first 4 d, rapidly increased from 5 d to 9 d, and then gently increased at the final few days of the 15 d indoor culture period. The photosynthetic rate or respiratory rate of the seedlings rapidly and significantly decreased when the temperature was °C or >28°C. Short-term high- or low-salinity shock had significant effect on the photosynthetic and respiratory rates of the seedlings, specifically at 10 and 50 psu. However, the photosynthetic and respiratory rates recovered to the normal levels after 24 h of recovery period, which demonstrated a powerful ion-transport system of the seedlings. These results provided reference for the artificial breeding of S. thunbergii.