期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation 被引量:4
1
作者 葛红霞 程荣军 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期91-97,共7页
Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the movi... Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail. 展开更多
关键词 meshless method moving Kriging interpolation time-fractional diffusion equation
下载PDF
An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation 被引量:1
2
作者 Muhammad Yaseen Muhammad Abbas 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2020年第3期359-378,共20页
In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-s... In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling. 展开更多
关键词 time-fractional telegraph equation finite difference method Cubic trigonometric B-splines collocation method Stability CONVERGENCE
下载PDF
Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics 被引量:1
3
作者 杜明婧 孙宝军 凯歌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期53-57,共5页
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho... This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics. 展开更多
关键词 time-fractional partial differential equation adaptive multi-step reproducing kernel method method numerical solution
下载PDF
Numerical Analysis of Linear and Nonlinear Time-Fractional Subdiffusion Equations 被引量:1
4
作者 Yu bo Yang Fanhai Zeng 《Communications on Applied Mathematics and Computation》 2019年第4期621-637,共17页
In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion e... In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion equation.Based on the temporal-spatial error splitting argument technique,the discrete fractional Gronwall inequality is also applied to prove the unconditional convergence of a semi-implicit Galerkin spectral method for a nonlinear time-fractional subdififusion equation. 展开更多
关键词 time-fractional subdififusion equation Convolution QUADRATURE FRACTIONAL linear MULTISTEP methods Discrete FRACTIONAL GRONWALL inequality Unconditional stability
下载PDF
Fractional Difference Approximations for Time-Fractional Telegraph Equation 被引量:1
5
作者 Ru Liu 《Journal of Applied Mathematics and Physics》 2018年第1期301-309,共9页
In this paper, we approximate the solution to time-fractional telegraph equation by two kinds of difference methods: the Grünwald formula and Caputo fractional difference.
关键词 time-fractional TELEGRAPH EQUATION the Grünwald FORMULA Caputo FRACTIONAL DIFFERENCE
下载PDF
New Exact Traveling Wave Solutions of (2 + 1)-Dimensional Time-Fractional Zoomeron Equation 被引量:2
6
作者 Zhiyun Zeng Xiaohua Liu +1 位作者 Yin Zhu Xue Huang 《Journal of Applied Mathematics and Physics》 2022年第2期333-346,共14页
In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the co... In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the conformable fractional derivative. As a result, the singular soliton solutions, kink and anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic function solutions and hyperbolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D graphs of some solutions were drawn by setting the suitable values of parameters with Maple, and analyze the dynamic behaviors of the solutions. 展开更多
关键词 Exact Traveling Wave Solutions (2 + 1)-Dimensional time-fractional Zoomeron Equation The New Mapping Approach The New Extended Auxiliary Equation Approach
下载PDF
HIGH-ORDER NUMERICAL METHOD FOR SOLVING A SPACE DISTRIBUTED-ORDER TIME-FRACTIONAL DIFFUSION EQUATION
7
作者 Jing LI Yingying YANG +2 位作者 Yingjun JIANG Libo FENG Boling GUO 《Acta Mathematica Scientia》 SCIE CSCD 2021年第3期801-826,共26页
This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-... This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-term fractional derivatives.Second,based on the piecewise-quadratic polynomials,we construct the nodal basis functions,and then discretize the multi-term fractional equation by the finite volume method.For the time-fractional derivative,the finite difference method is used.Finally,the iterative scheme is proved to be unconditionally stable and convergent with the accuracy O(σ^(2)+τ^(2-β)+h^(3)),whereτand h are the time step size and the space step size,respectively.A numerical example is presented to verify the effectiveness of the proposed method. 展开更多
关键词 Space distributed-order equation time-fractional diffusion equation piecewise-quadratic polynomials finite volume method stability and convergence
下载PDF
TWO REGULARIZATION METHODS FOR IDENTIFYING THE SOURCE TERM PROBLEM ON THE TIME-FRACTIONAL DIFFUSION EQUATION WITH A HYPER-BESSEL OPERATOR
8
作者 Fan YANG Qiaoxi SUN Xiaoxiao LI 《Acta Mathematica Scientia》 SCIE CSCD 2022年第4期1485-1518,共34页
In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional... In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional stability.Then,we give the optimal error bound for this inverse problem.Next,we use the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method to restore the stability of the ill-posed problem,and give corresponding error estimates under different regularization parameter selection rules.Finally,we verify the effectiveness of the method through numerical examples. 展开更多
关键词 time-fractional diffusion equation source term problem fractional Landweber regularization method Hyper-Bessel operator fractional Tikhonov regularization method
下载PDF
Variational iteration method for solving time-fractional diffusion equations in porous the medium
9
作者 吴国成 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期118-122,共5页
The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way. Some diffusion models... The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way. Some diffusion models with fractional derivatives are investigated analytically, and the results show the efficiency of the new Lagrange multiplier for fractional differential equations of arbitrary order. 展开更多
关键词 time-fractional diffusion equation Captuo derivative Riemann-Liouville derivative variational iteration method Laplace transform
下载PDF
Analysis and Numerical Computations of the Multi-Dimensional,Time-Fractional Model of Navier-Stokes Equation with a New Integral Transformation
10
作者 Yuming Chu Saima Rashid +3 位作者 Khadija Tul Kubra Mustafa Inc Zakia Hammouch M.S.Osman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3025-3060,共36页
The analytical solution of the multi-dimensional,time-fractional model of Navier-Stokes equation using the triple and quadruple Elzaki transformdecompositionmethod is presented in this article.The aforesaidmodel is an... The analytical solution of the multi-dimensional,time-fractional model of Navier-Stokes equation using the triple and quadruple Elzaki transformdecompositionmethod is presented in this article.The aforesaidmodel is analyzed by employing Caputo fractional derivative.We deliberated three stimulating examples that correspond to the triple and quadruple Elzaki transform decomposition methods,respectively.The findings illustrate that the established approaches are extremely helpful in obtaining exact and approximate solutions to the problems.The exact and estimated solutions are delineated via numerical simulation.The proposed analysis indicates that the projected configuration is extremely meticulous,highly efficient,and precise in understanding the behavior of complex evolutionary problems of both fractional and integer order that classify affiliated scientific fields and technology. 展开更多
关键词 Caputo derivative Elzaki transform time-fractional Navier-Stokes equation decomposition method
下载PDF
Exact solutions of a time-fractional modified KdV equation via bifurcation analysis
11
作者 刘敏远 许慧 王增桂 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期192-199,共8页
The time-fractional modified Korteweg-de Vries(KdV)equation is committed to establish exact solutions by employing the bifurcation method.Firstly,the phase portraits and related qualitative analysis are comprehensivel... The time-fractional modified Korteweg-de Vries(KdV)equation is committed to establish exact solutions by employing the bifurcation method.Firstly,the phase portraits and related qualitative analysis are comprehensively provided.Then,we give parametric expressions of different types of solutions matching with the corresponding orbits.Finally,solution profiles,3D and density plots of some solutions are presented with proper parametric choices. 展开更多
关键词 the time-fractional modified KdV equation bifurcation analysis exact solutions
下载PDF
Numerical Computation for Time-fractional Gas Dynamics Equations by Fractional Reduced Differential Transforms Method
12
作者 Brajesh Kumar Singh Pramod Kumar 《Journal of Mathematics and System Science》 2016年第6期248-259,共12页
The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fra... The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation (TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement. 展开更多
关键词 Gas Dynamics equation Caputo time-fractional derivatives Mittag-Leffler function reduced differential transformmethod Analytic solution
下载PDF
Second-order error analysis of the averaged L1 scheme L1 for time-fractional initial-value and subdiffusion problems
13
作者 Jinye Shen Fanhai Zeng Martin Stynes 《Science China Mathematics》 SCIE CSCD 2024年第7期1641-1664,共24页
Fractional initial-value problems(IVPs) and time-fractional initial-boundary value problems(IBVPs), each with a Caputo temporal derivative of order α ∈(0, 1), are considered. An averaged variant of the well-known L1... Fractional initial-value problems(IVPs) and time-fractional initial-boundary value problems(IBVPs), each with a Caputo temporal derivative of order α ∈(0, 1), are considered. An averaged variant of the well-known L1 scheme is proved to be O(N^(-2)) convergent for IVPs on suitably graded meshes with N points, thereby improving the O(N^(-(2-α))) convergence rate of the standard L1 scheme. The analysis relies on a delicate decomposition of the temporal truncation error that yields a sharp dependence of the order of convergence on the degree of mesh grading used. This averaged L1 scheme can be combined with a finite difference or piecewise linear finite element discretization in space for IBVPs, and under a restriction on the temporal mesh width, one gets again O(N^(-2)) convergence in time, together with O(h^(2)) convergence in space,where h is the spatial mesh width. Numerical experiments support our results. 展开更多
关键词 time-fractional SUBDIFFUSION averaged L1 scheme
原文传递
Explicit solutions to the time-fractional generalized dissipative Kawahara equation
14
作者 Marwan Alquran Mohammed Ali Omar Alshboul 《Journal of Ocean Engineering and Science》 SCIE 2024年第4期348-352,共5页
In this paper,the generalized dissipative Kawahara equation in the sense of conformable fractional derivative is presented and solved by applying the tanh-coth-expansion and sine-cosine function techniques.The quadrat... In this paper,the generalized dissipative Kawahara equation in the sense of conformable fractional derivative is presented and solved by applying the tanh-coth-expansion and sine-cosine function techniques.The quadratic-case and cubic-case are investigated for the proposed model.Expected solutions are obtained with highlighting to the effect of the presence of the alternative fractional-derivative and the effect of the added dissipation term to the generalized Kawahara equation.Some graphical analysis is presented to support the findings of the paper.Finally,we believe that the obtained results in this work will be important and valuable in nonlinear sciences and ocean engineering. 展开更多
关键词 time-fractional Kawahara equation Conformable-derivative Tanh-coth-expansion method Sine-cosine function method
原文传递
TWO-GRID FINITE ELEMENT METHOD FOR TIME-FRACTIONAL NONLINEAR SCHRODINGER EQUATION
15
作者 Hanzhang Hu Yanping Chen Jianwei Zhou 《Journal of Computational Mathematics》 SCIE CSCD 2024年第4期1124-1144,共21页
A two-grid finite element method with L1 scheme is presented for solving two-dimen-sional time-fractional nonlinear Schrodinger equation.The finite element solution in the L-norm are proved bounded without any time-st... A two-grid finite element method with L1 scheme is presented for solving two-dimen-sional time-fractional nonlinear Schrodinger equation.The finite element solution in the L-norm are proved bounded without any time-step size conditions(dependent on spatial-step size).The classical L1 scheme is considered in the time direction,and the two-grid finite element method is applied in spatial direction.The optimal order error estimations of the two-grid solution in the LP-norm is proved without any time-step size conditions.It is shown,both theoretically and numerically,that the coarse space can be extremely coarse,with no loss in the order of accuracy. 展开更多
关键词 time-fractional nonlinear Schrodinger equation Two-grid finite element me-thod The L1 scheme
原文传递
Lattice Boltzmann Model for Time-Fractional NonlinearWave Equations
16
作者 Yibo Wang Rui Du Zhenhua Chai 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第4期914-935,共22页
In this paper,a lattice Boltzmann model with BGK operator(LBGK)for solving time-fractional nonlinear wave equations in Caputo sense is proposed.First,the Caputo fractional derivative is approximated using the fast evo... In this paper,a lattice Boltzmann model with BGK operator(LBGK)for solving time-fractional nonlinear wave equations in Caputo sense is proposed.First,the Caputo fractional derivative is approximated using the fast evolution algorithm based on the sum-of-exponentials approximation.Then the target equation is transformed into an approximate form,and for which a LBGK model is developed.Through the Chapman-Enskog analysis,the macroscopic equation can be recovered from the present LBGK model.In addition,the proposed model can be extended to solve the time-fractional Klein-Gordon equation and the time-fractional Sine-Gordon equation.Finally,several numerical examples are performed to show the accuracy and efficiency of the present LBGK model.From the numerical results,the present model has a second-order accuracy in space. 展开更多
关键词 Lattice Boltzmann method time-fractional wave equation time-fractional Klein-Gordon equation time-fractional Sine-Gordon equation
原文传递
Analysis of L1-Galerkin FEMs for Time-Fractional Nonlinear Parabolic Problems 被引量:8
17
作者 Dongfang Li Hong-Lin Liao +2 位作者 Weiwei Sun Jilu Wang Jiwei Zhang 《Communications in Computational Physics》 SCIE 2018年第6期86-103,共18页
This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is li... This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is limited mainly due to the lack of a fundamental Gronwall type inequality.In this paper,we establish such a fundamental inequality for the L1 approximation to the Caputo fractional derivative.In terms of the Gronwall type inequality,we provide optimal error estimates of several fully discrete linearized Galerkin finite element methods for nonlinear problems.The theoretical results are illustrated by applying our proposed methods to the time fractional nonlinear Huxley equation and time fractional Fisher equation. 展开更多
关键词 time-fractional nonlinear parabolic problems L1-Galerkin FEMs Error estimates discrete fractional Gronwall type inequality Linearized schemes
原文传递
New Solutions of Three Nonlinear Space- and Time-Fractional Partial Differential Equations in Mathematical Physics 被引量:2
18
作者 姚若侠 王伟 陈听华 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第11期689-696,共8页
Motivated by the widely used ans¨atz method and starting from the modified Riemann–Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional pa... Motivated by the widely used ans¨atz method and starting from the modified Riemann–Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper. 展开更多
关键词 modified Riemann–Liouville DERIVATIVE FRACTIONAL complex transformation nonlinear space-and time-fractional partial differential equations TRAVELING wave solution
原文传递
A numerical method for two-dimensional nonlinear modified time-fractional fourth-order diffusion equation 被引量:3
19
作者 Haiyan He Kaijie Liang Baoli Yin 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2019年第1期51-76,共26页
In this paper,we consider the finite element method for two-dimensional nonlinear modified time-fractional fourth-order diffusion equation.In order to avoid using higher order elements,we introduce an intermediate var... In this paper,we consider the finite element method for two-dimensional nonlinear modified time-fractional fourth-order diffusion equation.In order to avoid using higher order elements,we introduce an intermediate variableσ=∆u and translate the fourth-order derivative of the original problem into a second-order coupled system.We discretize the fractional time derivative terms by using the L1-approximation and discretize the first-order time derivative term by using the second-order backward differentiation formula.In the fully discrete scheme,we implement the finite element method for the spatial approximation.Unconditional stability of the fully discrete scheme is proven and its optimal convergence order is obtained.Numerical experiments are carried out to demonstrate our theoretical analysis. 展开更多
关键词 time-fractional fourth-order diffusion equation finite element method Caputo-fractional derivative unconditional stability optimal convergence rate a priori error estimates
原文传递
Lie Symmetry Analysis, Conservation Laws and Exact Power Series Solutions for Time-Fractional Fordy–Gibbons Equation 被引量:2
20
作者 冯连莉 田守富 +1 位作者 王秀彬 张田田 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第9期321-329,共9页
In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–K... In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method. 展开更多
关键词 time-fractional Fordy-Gibbons equation Lie symmetry method symmetry reduction exact solution conservation laws
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部