In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints o...In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.展开更多
Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliab...Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.展开更多
In this paper, a mathematical model for topology optimization oftruss structures with constraints of displacement and systemreliability under multiple loading cases is constructed. In order toavoid the difficulty of c...In this paper, a mathematical model for topology optimization oftruss structures with constraints of displacement and systemreliability under multiple loading cases is constructed. In order toavoid the difficulty of computing the structure's system reliability,a solving approach is presented in which the failure probability ofsystem is divided into the sum of a all bars' failures probability bymeans of reliability distribution. In addition, by drawing into thereliability safety factor and the fundamen- tal relationship instructural mechanics, all probability constraints of displacement andstress are equiv- alently displayed as conventional form and linearfunction of the design variables.展开更多
This paper describes a methodology for computation of reliability of members of fixed offshore platform structures, with respect to fatigue. Failure criteria were formulated using fracture mechanics principle. The pro...This paper describes a methodology for computation of reliability of members of fixed offshore platform structures, with respect to fatigue. Failure criteria were formulated using fracture mechanics principle. The problem is coined as a “first passage problem”. The method was illustrated through application to a typical plane frame structure. The fatigue reliability degradation curve established can be used for planning in-service inspection of offshore platforms. A very limited parametric study was carried out to obtain insight into the effect of important variables on the fatigue reliability.展开更多
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
The objective of this work is to analyse fatigue reliability of deck structures subjected to correlated crack growth.The stress intensity factors of the correlated cracks are obtained by finite element analysis and ba...The objective of this work is to analyse fatigue reliability of deck structures subjected to correlated crack growth.The stress intensity factors of the correlated cracks are obtained by finite element analysis and based on which the geometry correction functions are derived.The Monte Carlo simulations are applied to predict the statistical descriptors of correlated cracks based on the Paris-Erdogan equation.A probabilistic model of crack growth as a function of time is used to analyse the fatigue reliability of deck structures accounting for the crack propagation correlation.A deck structure is modelled as a series system of stiffened panels,where a stiffened panel is regarded as a parallel system composed of plates and are longitudinal.It has been proven that the method developed here can be conveniently applied to perform the fatigue reliability assessment of structures subjected to correlated crack growth.展开更多
During the life of an offshore structure, its structural strength declines due to various kinds of damages related to the time factor. In this paper, four major kinds of damages, including damages caused by fatigue, d...During the life of an offshore structure, its structural strength declines due to various kinds of damages related to the time factor. In this paper, four major kinds of damages, including damages caused by fatigue, dent, corrosion and marine life, are discussed. Based on these analyses, formulas for the evaluation of the damaged structure reliability are derived. Furthermore the computer program ISM for the analysis of structural reliability is developed by the use of Advanced First Order Second Moment method and Monte-Carlo Importance Sampling method. The reliability of a turbular joint and a beam are studied as numerical examples. The results show that the theory and the analysis method given in this paper are reasonable and effective.展开更多
In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary el...In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary element method. First, the boundary integral equation of orthotropic plate and beams composite structures is given in this paper, and then based on the stochastic boundary element method, the method for reliability analysis of stochastic structures is establishes and formulas for computation of reliability index of orthotropic plate and beams composite structures are obtained. The computed examples show the efficient of the method used in this paper.展开更多
In order to take into account the uncertainties linked to the variables in the evaluation of the statistical properties of structural response, a reliability approach with probabilistic aspect was considered. This is ...In order to take into account the uncertainties linked to the variables in the evaluation of the statistical properties of structural response, a reliability approach with probabilistic aspect was considered. This is called the Probabilistic Transformation Method (PTM). This method is readily applicable when the function between the input and the output of the system is explicit. However, the situation is much more involved when it is necessary to perform the evaluation of implicit function between the input and the output of the system through numerical models. In this work, we propose a technique that combines Finite Element Analysis (FEA) and Probabilistic Transformation Method (PTM) to evaluate the Probability Density Function (PDF) of response where the function between the input and the output of the system is implicit. This technique is based on the numerical simulations of the Finite Element Analysis (FEA) and the Probabilistic Transformation Method (PTM) using an interface between Finite Element software and Matlab. Some problems of structures are treated in order to prove the applicability of the proposed technique. Moreover, the obtained results are compared to those obtained by the reference method of Monte Carlo. A second aim of this work is to develop an algorithm of global optimization using the local method SQP, because of its effectiveness and its rapidity of convergence. For this reason, we have combined the method SQP with the Multi start method. This developed algorithm is tested on test functions comparing with other methods such as the method of Particle Swarm Optimization (PSO). In order to test the applicability of the proposed approach, a structure is optimized under reliability constraints.展开更多
With the increasing application of floating platforms in deep waters and harsh environments,a proper assessment of the reliability of floating structures is important to ensure that these structures can operate safely...With the increasing application of floating platforms in deep waters and harsh environments,a proper assessment of the reliability of floating structures is important to ensure that these structures can operate safely during their design lives.This study outlines a practical methodology for reliability analysis of a semi-submersible platform based estimating the probability distribution of the extreme response in rough sea conditions(survival conditions).The Constrained NewWave(CNW)theory combined with Monte Carlo simulations was first applied to simulate the random wave surface elevation process in the time domain.A Gumbel distribution was the best fitting to describe the dynamically sensitive extreme response statistics under extreme waves(drift and mooring tension).The derived probability distribution of the extreme response was subsequently used in estimation of the associated limit state func-tion,and a reliability analysis of the floating structure was conducted using the Monte Carlo method.A semi-submersible platform in a water depth of 1500 m subjected to extreme wave loads was used to demonstrate the efficiency of the proposed methodology.The probability of failure of the semi-submersible when considering mooring lines tension is greater than considering drift.展开更多
Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein...Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein we intend to update the finite element model automatically in the identification process of failure modes and further perform the system reliability analysis efficiently.This study presents a framework that is implemented through the joint simulation of MATLAB and APDL and consists of three parts:reliability index of a single member,identification of dominant failure modes,and system-level reliability analysis for system reliability analysis of truss structures.Firstly,RSM(response surface method)combines with a constrained optimization model to calculate the reliability indices ofmembers.Then theβ-unzipping method is adopted to identify the dominant failuremodes,and the system function in MATLAB,as well as the EKILL command in APDL,is used to facilitate the automatic update of the finite element model and realize load-redistribution.Besides,the differential equivalence recursion algorithmis performed to approximate the reliability indices of failuremodes efficiently and accurately.Eventually,the PNET(probabilistic network evaluation technique)is used to calculate the joint failure probability as well as the system reliability index.Two illustrative examples demonstrate the accuracy and efficiency of the proposed system reliability analysis framework through comparison with corresponding references.展开更多
This paper presents a set of fundamental equations for reliability analysis of single-critical-point aircraft structures.The mathematical model is formulated by considering the following factors:the static strength of...This paper presents a set of fundamental equations for reliability analysis of single-critical-point aircraft structures.The mathematical model is formulated by considering the following factors:the static strength of structure,initial crack,the initiation and propagation and unstability of fatigue crack,the residual strength of structure,the statistical distribution of load,the periods of overhaul,accident damage,the communication of damage among fleets etc.Based on this mathematical model,the influence of these factors on the reliability can be quantitatively analyzed,and various criteria for fatigue design of aircraft structures can be evaluated from the aspect of reliability.展开更多
This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty...This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.展开更多
The target reliability indices of the foundation structures of sea-crossing bridges on the serviceability limit state (SLS) are different from those of common bridges due to their different surroundings. Consequentl...The target reliability indices of the foundation structures of sea-crossing bridges on the serviceability limit state (SLS) are different from those of common bridges due to their different surroundings. Consequently, three levels of the target reliability indices, which are 1.5, 2. 0 and 2. 3, respectively, for those structures on the SLS are suggested based on the Joint Committee on Structural Safety (JCSS) model code, and a new method of calibrating factors of live loads, which is based on the contribution ratio of tensile stresses of reinforcing bars produced by various loads to the maximum crack width of concrete, is proposed. Finally, the calibration of the reliability-based factors of the frequent value and the quasi-permanent value of live loads is conducted by the Joint Committee (JC) method through an actual design, and the indices are proved to be reasonable and the new method is proved to be feasible.展开更多
Material performance of LY12CZ aluminum is greatly degraded because of corrosion and corrosion fatigue, which severely affect the integrity and safety of aircraft structure, especially those of lbe navy aircraft struc...Material performance of LY12CZ aluminum is greatly degraded because of corrosion and corrosion fatigue, which severely affect the integrity and safety of aircraft structure, especially those of lbe navy aircraft structure. The corrosion and corrosion fatigue failure process of aircraft structure are directly concerned with many factors, such as load, material characteristics, corrosive environment and so on. The damage mechanism is very complicated, and there are both randomness and fuzziness in the failure process. With consideration of the limitation of those conventional probabilistic approaches for prediction of corrosion fatigue life of aircraft structure at present, and based on the operational load spectrum obtained through investigating service status of the aircraft in naval aviation force, a fuzzy reliability approach is proposed, which is more reasonable and closer to the fact. The effects of the pit aspect ratio, the crack aspect ratio and all fuzzy factors on corrosion fatigue life of aircraft structure are discussed. The results demonstrate that the approach can be applied to predict the corrosion fatigue life of aircraft structure.展开更多
Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during ...Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during the few decades. But until now estimating remaining service life methods of crane steel system by reliability theory begin to develop. Safety assessment of existing steel structure system requires the development of a methodology that allows for an accurate evaluation of reliability and prediction of the remaining life. Steel structures are the supporting elements in the special equipment such as hoisting machinery. Structure reliability and remaining service life safe assessment are important for steel structures. For finding the reason which caused the failure modes (such as fatigue strength failure, stiffness failure and stability failure), incremental loading method based on possibilistic reliability is applied into dynamic structure failure path research. Through reliability analyzing and calculating for crane, it is demonstrated that fatigue damage is the most common failure mode. Fuzzy fatigue damage accumulation theory is used for basis theory and Paris-Eadogan equations are used for mathematical modeling. All fatigue parameter values of the welding box girder of bridge cranes are determined and fatigue remaining life formulas are deduced. After field test and collecting working parameters of numerous cranes, typical fatigue load spectrum was compiled for the dangerous point of box girders used in the area. Fatigue remaining life is assessed for different types and lifting capacities. Safety for steel structure system of bridge crane is assessed by two quantitative indexs: reliability and remaining life. Therefore, the evaluation means is more comprehensive and reasonable. The example shows that the two quantitative indexs are mutually correlated. Through analyzing the 120 t-22.5 m bridge crane of a certain enterprise, a new methodology to estimate remaining service life of steel structure by possibilistic reliability theory is introduced for safety evaluation of structure system.展开更多
As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such...As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved, and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.展开更多
Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the ...Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case.展开更多
The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression...The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression(DWR) was presented.In the proposed method,the basic principle of the iteratively adaptive response surface method is applied.Uniform design is used to sample the fitting points.And a double weighted regression system considering the distances from the fitting points to the limit state surface and to the estimated design points is set to determine the coefficients of the response surface model.Compared with the conventional approaches,the fitting points selected by UD are more representative,and a better approximation in the key region is also observed with DWR.Numerical examples show that the proposed method has good convergent capability and computational accuracy.展开更多
文摘In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.
基金supported by the National Natural Science Foundation of China(51175510)
文摘Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.
基金the National Natural Science Foundation of China
文摘In this paper, a mathematical model for topology optimization oftruss structures with constraints of displacement and systemreliability under multiple loading cases is constructed. In order toavoid the difficulty of computing the structure's system reliability,a solving approach is presented in which the failure probability ofsystem is divided into the sum of a all bars' failures probability bymeans of reliability distribution. In addition, by drawing into thereliability safety factor and the fundamen- tal relationship instructural mechanics, all probability constraints of displacement andstress are equiv- alently displayed as conventional form and linearfunction of the design variables.
文摘This paper describes a methodology for computation of reliability of members of fixed offshore platform structures, with respect to fatigue. Failure criteria were formulated using fracture mechanics principle. The problem is coined as a “first passage problem”. The method was illustrated through application to a typical plane frame structure. The fatigue reliability degradation curve established can be used for planning in-service inspection of offshore platforms. A very limited parametric study was carried out to obtain insight into the effect of important variables on the fatigue reliability.
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
基金Supported by China Scholarship Council under Grant No.2008110133
文摘The objective of this work is to analyse fatigue reliability of deck structures subjected to correlated crack growth.The stress intensity factors of the correlated cracks are obtained by finite element analysis and based on which the geometry correction functions are derived.The Monte Carlo simulations are applied to predict the statistical descriptors of correlated cracks based on the Paris-Erdogan equation.A probabilistic model of crack growth as a function of time is used to analyse the fatigue reliability of deck structures accounting for the crack propagation correlation.A deck structure is modelled as a series system of stiffened panels,where a stiffened panel is regarded as a parallel system composed of plates and are longitudinal.It has been proven that the method developed here can be conveniently applied to perform the fatigue reliability assessment of structures subjected to correlated crack growth.
文摘During the life of an offshore structure, its structural strength declines due to various kinds of damages related to the time factor. In this paper, four major kinds of damages, including damages caused by fatigue, dent, corrosion and marine life, are discussed. Based on these analyses, formulas for the evaluation of the damaged structure reliability are derived. Furthermore the computer program ISM for the analysis of structural reliability is developed by the use of Advanced First Order Second Moment method and Monte-Carlo Importance Sampling method. The reliability of a turbular joint and a beam are studied as numerical examples. The results show that the theory and the analysis method given in this paper are reasonable and effective.
文摘In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary element method. First, the boundary integral equation of orthotropic plate and beams composite structures is given in this paper, and then based on the stochastic boundary element method, the method for reliability analysis of stochastic structures is establishes and formulas for computation of reliability index of orthotropic plate and beams composite structures are obtained. The computed examples show the efficient of the method used in this paper.
文摘In order to take into account the uncertainties linked to the variables in the evaluation of the statistical properties of structural response, a reliability approach with probabilistic aspect was considered. This is called the Probabilistic Transformation Method (PTM). This method is readily applicable when the function between the input and the output of the system is explicit. However, the situation is much more involved when it is necessary to perform the evaluation of implicit function between the input and the output of the system through numerical models. In this work, we propose a technique that combines Finite Element Analysis (FEA) and Probabilistic Transformation Method (PTM) to evaluate the Probability Density Function (PDF) of response where the function between the input and the output of the system is implicit. This technique is based on the numerical simulations of the Finite Element Analysis (FEA) and the Probabilistic Transformation Method (PTM) using an interface between Finite Element software and Matlab. Some problems of structures are treated in order to prove the applicability of the proposed technique. Moreover, the obtained results are compared to those obtained by the reference method of Monte Carlo. A second aim of this work is to develop an algorithm of global optimization using the local method SQP, because of its effectiveness and its rapidity of convergence. For this reason, we have combined the method SQP with the Multi start method. This developed algorithm is tested on test functions comparing with other methods such as the method of Particle Swarm Optimization (PSO). In order to test the applicability of the proposed approach, a structure is optimized under reliability constraints.
基金supported by the National Key Research and Development Program of China(No.2016YFC0303401)the National Natural Science Foundation of China(No.51779236)the National Natural Science Foundation of China-Shandong Joint Fund(No.U1706226).
文摘With the increasing application of floating platforms in deep waters and harsh environments,a proper assessment of the reliability of floating structures is important to ensure that these structures can operate safely during their design lives.This study outlines a practical methodology for reliability analysis of a semi-submersible platform based estimating the probability distribution of the extreme response in rough sea conditions(survival conditions).The Constrained NewWave(CNW)theory combined with Monte Carlo simulations was first applied to simulate the random wave surface elevation process in the time domain.A Gumbel distribution was the best fitting to describe the dynamically sensitive extreme response statistics under extreme waves(drift and mooring tension).The derived probability distribution of the extreme response was subsequently used in estimation of the associated limit state func-tion,and a reliability analysis of the floating structure was conducted using the Monte Carlo method.A semi-submersible platform in a water depth of 1500 m subjected to extreme wave loads was used to demonstrate the efficiency of the proposed methodology.The probability of failure of the semi-submersible when considering mooring lines tension is greater than considering drift.
基金support from the National Key R&D Program of China(Grant Nos.2021YFB2600605,2021YFB2600600)the Overseas Scholar Program in the Hebei Province(C20190514)+1 种基金from the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures Project(ZZ2020-20)from the Youth Foundation of Hebei Science and Technology Research Project(QN2018108).
文摘Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein we intend to update the finite element model automatically in the identification process of failure modes and further perform the system reliability analysis efficiently.This study presents a framework that is implemented through the joint simulation of MATLAB and APDL and consists of three parts:reliability index of a single member,identification of dominant failure modes,and system-level reliability analysis for system reliability analysis of truss structures.Firstly,RSM(response surface method)combines with a constrained optimization model to calculate the reliability indices ofmembers.Then theβ-unzipping method is adopted to identify the dominant failuremodes,and the system function in MATLAB,as well as the EKILL command in APDL,is used to facilitate the automatic update of the finite element model and realize load-redistribution.Besides,the differential equivalence recursion algorithmis performed to approximate the reliability indices of failuremodes efficiently and accurately.Eventually,the PNET(probabilistic network evaluation technique)is used to calculate the joint failure probability as well as the system reliability index.Two illustrative examples demonstrate the accuracy and efficiency of the proposed system reliability analysis framework through comparison with corresponding references.
文摘This paper presents a set of fundamental equations for reliability analysis of single-critical-point aircraft structures.The mathematical model is formulated by considering the following factors:the static strength of structure,initial crack,the initiation and propagation and unstability of fatigue crack,the residual strength of structure,the statistical distribution of load,the periods of overhaul,accident damage,the communication of damage among fleets etc.Based on this mathematical model,the influence of these factors on the reliability can be quantitatively analyzed,and various criteria for fatigue design of aircraft structures can be evaluated from the aspect of reliability.
文摘This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.
基金The National Natural Science Foundation of China (No.50538070).
文摘The target reliability indices of the foundation structures of sea-crossing bridges on the serviceability limit state (SLS) are different from those of common bridges due to their different surroundings. Consequently, three levels of the target reliability indices, which are 1.5, 2. 0 and 2. 3, respectively, for those structures on the SLS are suggested based on the Joint Committee on Structural Safety (JCSS) model code, and a new method of calibrating factors of live loads, which is based on the contribution ratio of tensile stresses of reinforcing bars produced by various loads to the maximum crack width of concrete, is proposed. Finally, the calibration of the reliability-based factors of the frequent value and the quasi-permanent value of live loads is conducted by the Joint Committee (JC) method through an actual design, and the indices are proved to be reasonable and the new method is proved to be feasible.
文摘Material performance of LY12CZ aluminum is greatly degraded because of corrosion and corrosion fatigue, which severely affect the integrity and safety of aircraft structure, especially those of lbe navy aircraft structure. The corrosion and corrosion fatigue failure process of aircraft structure are directly concerned with many factors, such as load, material characteristics, corrosive environment and so on. The damage mechanism is very complicated, and there are both randomness and fuzziness in the failure process. With consideration of the limitation of those conventional probabilistic approaches for prediction of corrosion fatigue life of aircraft structure at present, and based on the operational load spectrum obtained through investigating service status of the aircraft in naval aviation force, a fuzzy reliability approach is proposed, which is more reasonable and closer to the fact. The effects of the pit aspect ratio, the crack aspect ratio and all fuzzy factors on corrosion fatigue life of aircraft structure are discussed. The results demonstrate that the approach can be applied to predict the corrosion fatigue life of aircraft structure.
基金supported by National Scientific and Technological Support Projects during the 11th Five-Year Plan Period (Grant No. 2006BAK02B04)Shanxi Provincial Youth Science and Technology Research Fund of China (Grant No. 2006021029)+2 种基金Shanxi Provincial Natural Science Foundation of China (Grant No. 2008011043-1)Shanxi Provincial High-tech Industrialization Project of China (Grant No20090020)Doctor Fund of Taiyuan University of Science and Technology of China (Grant No. 20092005)
文摘Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during the few decades. But until now estimating remaining service life methods of crane steel system by reliability theory begin to develop. Safety assessment of existing steel structure system requires the development of a methodology that allows for an accurate evaluation of reliability and prediction of the remaining life. Steel structures are the supporting elements in the special equipment such as hoisting machinery. Structure reliability and remaining service life safe assessment are important for steel structures. For finding the reason which caused the failure modes (such as fatigue strength failure, stiffness failure and stability failure), incremental loading method based on possibilistic reliability is applied into dynamic structure failure path research. Through reliability analyzing and calculating for crane, it is demonstrated that fatigue damage is the most common failure mode. Fuzzy fatigue damage accumulation theory is used for basis theory and Paris-Eadogan equations are used for mathematical modeling. All fatigue parameter values of the welding box girder of bridge cranes are determined and fatigue remaining life formulas are deduced. After field test and collecting working parameters of numerous cranes, typical fatigue load spectrum was compiled for the dangerous point of box girders used in the area. Fatigue remaining life is assessed for different types and lifting capacities. Safety for steel structure system of bridge crane is assessed by two quantitative indexs: reliability and remaining life. Therefore, the evaluation means is more comprehensive and reasonable. The example shows that the two quantitative indexs are mutually correlated. Through analyzing the 120 t-22.5 m bridge crane of a certain enterprise, a new methodology to estimate remaining service life of steel structure by possibilistic reliability theory is introduced for safety evaluation of structure system.
文摘As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved, and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.
基金This work was supported by Sichuan Science and Technology Program under the Contract No.2020JDJQ0036.
文摘Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case.
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by National Outstanding Doctoral Dissertations Special Funds of China
文摘The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression(DWR) was presented.In the proposed method,the basic principle of the iteratively adaptive response surface method is applied.Uniform design is used to sample the fitting points.And a double weighted regression system considering the distances from the fitting points to the limit state surface and to the estimated design points is set to determine the coefficients of the response surface model.Compared with the conventional approaches,the fitting points selected by UD are more representative,and a better approximation in the key region is also observed with DWR.Numerical examples show that the proposed method has good convergent capability and computational accuracy.