Alkaline metals and hydrogen titanates are of great interest for possible applications. The qualities of soda ash and Rosetta ilmenite ore concentrate pellets were investigated. The kinetic formation of sodium titanat...Alkaline metals and hydrogen titanates are of great interest for possible applications. The qualities of soda ash and Rosetta ilmenite ore concentrate pellets were investigated. The kinetic formation of sodium titanate via roasting of soda ash and ilmenite pellets and powder was studied in the temperature range of 800。C to 900。C.展开更多
XRD measurements were carried out on plasma sprayed titanates BaTiO_(3),CaTiO_(3),MgTiO_(3)and a mixture of the last two.Samples were tested as dielectrics and volume resistivities of the materials were also summarize...XRD measurements were carried out on plasma sprayed titanates BaTiO_(3),CaTiO_(3),MgTiO_(3)and a mixture of the last two.Samples were tested as dielectrics and volume resistivities of the materials were also summarized.Microwave microscopy was used for mapping of the dielectric response of selected samples.The results show differences in the crystal structure between plasma sprayed coatings and feedstock powders in the case of BaTiO_(3)and MgTiO_(3)whereas CaTiO_(3)is crystalograffically identical with its feedstock.The reason can be found in larger sensitivity of BaTiO_(3)and MgTiO_(3)to the reductive conditions at plasma spraying whereas CaTiO_(3)seems to be rather inert from this viewpoint.However CaTiO_(3)exhibits anomalous dielectric losses because of intrinsic conductivity.展开更多
Uses of layered alkali titanates(A_(2)Ti_(n)O_(2n+1);Na_(2)Ti_(3)O_(7),K_(2)Ti_(4)O_(9),and Cs_(2)Ti_(5)O_(11))for energy and environmental issues are summarized.Layered alkali titanates of various structural types an...Uses of layered alkali titanates(A_(2)Ti_(n)O_(2n+1);Na_(2)Ti_(3)O_(7),K_(2)Ti_(4)O_(9),and Cs_(2)Ti_(5)O_(11))for energy and environmental issues are summarized.Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks.If compared with commonly known titanium dioxides(anatase and rutile),materials design based on layered alkali titanates is quite versatile due to the unique structure(nanosheet)and morphological characters(anisotropic particle shape).Recent development of various synthetic methods(solid-state reaction,flux method,and hydrothermal reaction)for controlling the particle shape and size of layered alkali titanates are discussed.The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization.These possible materials design made layered alkali titanates promising for energy(including catalysis,photocatalysts,and battery)and environmental(metal ion concentration from aqueous environments)applications.展开更多
The design and fabrication of nanostmctures based on titanium dioxide (TiO2) have attracted much attention because of their low cost, non-toxicity, stability, and potential applications in industry and technology. R...The design and fabrication of nanostmctures based on titanium dioxide (TiO2) have attracted much attention because of their low cost, non-toxicity, stability, and potential applications in industry and technology. Recently, one-dimensional (1 D) struc- tured titanates have been used as titanium source to prepare TiO2 nanostructures with various crystalline phases, shapes, sizes, exposed facets, and hierarchical structures. Among the synthetic strategies, hydrothermal method is a facile route to controlla- ble preparation of well-crystalline TiO2 in one step. Herein, we review our recent progress in transferring 1D titanates into TiO2 nanostructures through hydrothermal method, including the transformation mechanism and applications.展开更多
TiO2 compounds possess relatively high adsorption abilities and exhibit high photocatalytic activities that exhibit potential for the destruction of organic pollutants in natural and waste waters.Nanostructured potass...TiO2 compounds possess relatively high adsorption abilities and exhibit high photocatalytic activities that exhibit potential for the destruction of organic pollutants in natural and waste waters.Nanostructured potassium polytitanates modified using transition metals and their oxides/hydroxides generate new nanomaterials that operate in the visible spectral range.This study presents the synthesis and investigation of the structure,composition and photocatalytic activity of powdered nanoscale quasi-amorphous potassium polytitanates particles modified with iron,zinc,copper,cobalt and nickel sulfate in aqueous solutions.All of the powders investigated in this work exhibit a high adsorption capacity for methylene blue dye(15-20mg/g) related to the welldeveloped surface of the layered potassium polytitanate particles.Introducing transition metals and their oxides/hydroxides influences the electronic structure of the obtained systems.A high photocatalytic activity was observed for systems containing iron,zinc,nickel and their oxides/hydroxides in the ultraviolet and visible ranges.展开更多
Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alte...Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost.Among various anode materials of SIBs,beneficial properties,such as outstanding stability,great abundance,and environmental friendliness,make sodium titanates(NTOs),one of the most promising anode materials for the rechargeable SIBs.Nevertheless,there are still enormous challenges in application of NTO,owing to its low intrinsic electronic conductivity and collapse of structure.The research on NTOs is still in its infancy;there are few conclusive reviews about the specific function of various modification methods.Herein,we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques.Our work provides effective guidance for promoting the continuous development,equipping NTOs in safety-critical systems,and lays a foundation for the development of NTO-anode materials in SIBs.展开更多
The corrosion inhibition efficacy of titanate(CaTiO_(3))for carbon anodes in molten salts was investigated through various analytical techniques,including linear sweep voltammetry,X-ray diffraction,scanning electron m...The corrosion inhibition efficacy of titanate(CaTiO_(3))for carbon anodes in molten salts was investigated through various analytical techniques,including linear sweep voltammetry,X-ray diffraction,scanning electron microscopy,and energy dispersion spectroscopy.The results demonstrate that the addition of CaTiO_(3)corrosion inhibitor efficiently passivates the carbon anode and leads to the formation of a dense CaTiO_(3)layer during the electrolysis process in molten CaCl_(2)-CaO.Subsequently,the passivated carbon anode effectively undergoes the oxygen evolution reaction,with an optimal current density for passivation identified at 400 m A/cm^(2).Comprehensive investigations,including CaTiO_(3)solubility tests in molten CaCl_(2)-CaO and numerical modeling of the stability of complex ionic structures,provide compelling evidence supporting“complexation-precipitation”passivation mechanism.This mechanism involves the initial formation of a complex containing TiO_(2)·nCaO by CaTiO_(3)and CaO,which subsequently decomposes to yield CaTiO_(3),firmly coating the surface of the carbon anode.In practical applications,the integration of CaTiO_(3)corrosion inhibitor with the carbon anode leads to the successful preparation of the FeCoNiCrMn high-entropy alloy without carbon contamination in the molten CaCl_(2)-CaO.展开更多
The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate...The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate whisker(PTW,K_(2)Ti_(6)O_(13)),and after was incorporated into gun propellant as erosion-reducing and mechanical-reinforcing fillers.The interfacial characterizations results indicated that as-prepared PTW@PDA composites exhibits an enhanced surface compatible with propellant matrix,thereby facilitating their dispersion into propellants more effectively than raw PTW materials.Compared to original propellants,PTW@PDA-modified propellants exhibited significant less erosion,with a Ti-Kbased protective coating being detected on the eroded steel.And 0.5 wt%and 1.0 wt%addition of PTW@PDA significantly improved impact,compressive and tensile strength of propellants.Despite the inevitably reduction in relative force,PTW@PDA slightly increase propellant burning rate while exerting little adverse impact on propellant dynamic activity.This strategy can provide a promising alternative to develop high-energy gun propellant with less erosion and more mechanical strength.展开更多
To enhance the piezoelectric performance of piezoelectric polymer thin films in general,hybrid polyvinylidene difluoride(PVDF)and nanosized barium titanate(BaTiO_(3))piezoelectric films were prepared and their piezoel...To enhance the piezoelectric performance of piezoelectric polymer thin films in general,hybrid polyvinylidene difluoride(PVDF)and nanosized barium titanate(BaTiO_(3))piezoelectric films were prepared and their piezoelectric performance examined.The hybrid nanofibers were fabricated via electrospinning at an external voltage of 15 kV.The nonwoven fabrics were collected using a roller collection device,and their morphological structures were analyzed via scanning electron microscopy.The crystal structures of these piezoelectric films were characterized via micro-Raman spectroscopy.β-phase of the composite nanofiber membrane almost increased to twice owing to the addition of BaTiO_(3)nanoparticles.Compared with pure,electrospun PVDF piezoelectric film,the piezoelectric characteristics of the hybrid piezoelectric films were considerably enhanced because of the additional BaTiO_(3)nanoparticles.The maximum instantaneous open-circuit voltage of the hybrid PVDF-BaTiO_(3)nanofibers film can be high up to 80 V.The high-performance hybrid piezoelectric films exhibited notable prospects for applications in wearable electronic textiles.展开更多
The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO...The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.展开更多
A sol-gel method using lauric acid as surfactant was used to synthesize Li4Ti5O12 nanocrystals with an ultra-fine particle size distribution between 120 and 250 nm.In order to obtain the electrode materials with the b...A sol-gel method using lauric acid as surfactant was used to synthesize Li4Ti5O12 nanocrystals with an ultra-fine particle size distribution between 120 and 250 nm.In order to obtain the electrode materials with the best electrochemical performance,the content of lauric acid during Li4Ti5O12 synthesis was systematically studied.The physical and electrochemical properties of the synthesized samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),laser particle size analysis,alternating current impedance(AC) and galvanostatic charge-discharge experiments.The highly dispersed Li4Ti5O12 nanocrystals obtained at 800 ℃ for 10 h can deliver a specific capacity of 163.3 mA-h/g at 1C rate without obvious capacity fade up to 50 cycles.The results suggest that well dispersed Li4Ti5O12 nanocrystals shorten the Li-ion diffusion length and enhance the electrochemical kinetics of the samples,which are very crucial to high rate capability.展开更多
BaTiO3/polyurethane (BaTiO3/PU) nanocomposite elastomers were prepared from barium titanate nanoparticles, polyester polyol, 2, 4-toluene diisocyanate, 1,4-butanediol and 1, 1, 1-trimethanol propane by the one-step ...BaTiO3/polyurethane (BaTiO3/PU) nanocomposite elastomers were prepared from barium titanate nanoparticles, polyester polyol, 2, 4-toluene diisocyanate, 1,4-butanediol and 1, 1, 1-trimethanol propane by the one-step method. The density, hardness and dielectric constant of BaTiO3/PU nanocomposite elastomers increased with the increase of the content of BaTiO3 nanoparticles in nanocomposites. The electrostrictive properties of BaTiO3/PU nanocomposite elastomers were investigated by the digital speckle correlation method (DSCM). It was found that through the on-and-off of the electric field, the electrostrictive strains of BaTiO3/PU nanocomposite elastomers revealed corresponding shrinkage and recovery. The electrostrictive coefficient of BaTiO3/PU nanocomposite elastomers was greater than that of the corresponding polyurethane elastomers, and the electrostrictive coefficient of composites decreased with the increase of the content of barium titanate nanoparticles.展开更多
The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure an...The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure and morphology of Li4Ti4.95Ta0.05O12.Ta-doping does not change the phase composition and particle morphology,while improves remarkably its cycling stability at high charge/discharge rate.Li4Ti4.95Ta0.05O12 exhibits an excellent rate capability with a reversible capacity of 116.1 mA·h/g at 10C and even 91.0 mA·h/g at 30C.The substitution of Ta for Ti site can enhance the electronic conductivity of Li4Ti5O12 via the generation of mixing Ti4+/Ti3+,which indicates that Li4Ti4.95Ta0.05O12 is a promising candidate material for anodes in lithium-ion battery application.展开更多
文摘Alkaline metals and hydrogen titanates are of great interest for possible applications. The qualities of soda ash and Rosetta ilmenite ore concentrate pellets were investigated. The kinetic formation of sodium titanate via roasting of soda ash and ilmenite pellets and powder was studied in the temperature range of 800。C to 900。C.
文摘XRD measurements were carried out on plasma sprayed titanates BaTiO_(3),CaTiO_(3),MgTiO_(3)and a mixture of the last two.Samples were tested as dielectrics and volume resistivities of the materials were also summarized.Microwave microscopy was used for mapping of the dielectric response of selected samples.The results show differences in the crystal structure between plasma sprayed coatings and feedstock powders in the case of BaTiO_(3)and MgTiO_(3)whereas CaTiO_(3)is crystalograffically identical with its feedstock.The reason can be found in larger sensitivity of BaTiO_(3)and MgTiO_(3)to the reductive conditions at plasma spraying whereas CaTiO_(3)seems to be rather inert from this viewpoint.However CaTiO_(3)exhibits anomalous dielectric losses because of intrinsic conductivity.
基金This work was supported by the Research Chair Grant 2017(Grant No.FDA-CO-2560-5655)from the National Science and Technology Development Agency(NSTDA),Thailandthe Program Management Unit for Human Resources&Institutional Development,Research and Innovation,NXPO(B05F630117)Thailand,and the MEXT Promotion of Distinctive Joint Research Center Program(Grant No.JPMXP0618217662).
文摘Uses of layered alkali titanates(A_(2)Ti_(n)O_(2n+1);Na_(2)Ti_(3)O_(7),K_(2)Ti_(4)O_(9),and Cs_(2)Ti_(5)O_(11))for energy and environmental issues are summarized.Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks.If compared with commonly known titanium dioxides(anatase and rutile),materials design based on layered alkali titanates is quite versatile due to the unique structure(nanosheet)and morphological characters(anisotropic particle shape).Recent development of various synthetic methods(solid-state reaction,flux method,and hydrothermal reaction)for controlling the particle shape and size of layered alkali titanates are discussed.The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization.These possible materials design made layered alkali titanates promising for energy(including catalysis,photocatalysts,and battery)and environmental(metal ion concentration from aqueous environments)applications.
基金supported by the National Natural Science Foundation of China (50821061 and 21133001)National Basic Research Program of China (2007CB936201 and 2011CB808702), and 9140C150304110C1502)
文摘The design and fabrication of nanostmctures based on titanium dioxide (TiO2) have attracted much attention because of their low cost, non-toxicity, stability, and potential applications in industry and technology. Recently, one-dimensional (1 D) struc- tured titanates have been used as titanium source to prepare TiO2 nanostructures with various crystalline phases, shapes, sizes, exposed facets, and hierarchical structures. Among the synthetic strategies, hydrothermal method is a facile route to controlla- ble preparation of well-crystalline TiO2 in one step. Herein, we review our recent progress in transferring 1D titanates into TiO2 nanostructures through hydrothermal method, including the transformation mechanism and applications.
基金supported by the Federal Target Program"Research and professional community of innovative Russia,2009-2013"(project#P-869,agreements#14.B37.21.1080 and14.B37.21.1076)
文摘TiO2 compounds possess relatively high adsorption abilities and exhibit high photocatalytic activities that exhibit potential for the destruction of organic pollutants in natural and waste waters.Nanostructured potassium polytitanates modified using transition metals and their oxides/hydroxides generate new nanomaterials that operate in the visible spectral range.This study presents the synthesis and investigation of the structure,composition and photocatalytic activity of powdered nanoscale quasi-amorphous potassium polytitanates particles modified with iron,zinc,copper,cobalt and nickel sulfate in aqueous solutions.All of the powders investigated in this work exhibit a high adsorption capacity for methylene blue dye(15-20mg/g) related to the welldeveloped surface of the layered potassium polytitanate particles.Introducing transition metals and their oxides/hydroxides influences the electronic structure of the obtained systems.A high photocatalytic activity was observed for systems containing iron,zinc,nickel and their oxides/hydroxides in the ultraviolet and visible ranges.
基金supported by projects from the National Natural Science Foundation of China(U20A20145)the Open Project of State Key Laboratory of Environment-friendly Energy Materials(20kfhg07)+6 种基金Distinguished Young Foundation of Sichuan Province(2020JDJQ0027)2020 Strategic Cooperation Project between Sichuan University and the Zigong Municipal People's Government(2020CDZG-09)State Key Laboratory of Polymer Materials Engineering(sklpme2020-3-02)Sichuan Provincial Department of Science and Technology(2020YFG0471,2020YFG0022,2022YFG0124)Sichuan Province Science and Technology Achievement Transfer and Transformation Project(21ZHSF0111)Sichuan University Postdoctoral Interdisciplinary Innovation Fund(2021SCU12084)Start-up funding of Chemistry and Chemical Engineering Guangdong Laboratory(2122010)。
文摘Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost.Among various anode materials of SIBs,beneficial properties,such as outstanding stability,great abundance,and environmental friendliness,make sodium titanates(NTOs),one of the most promising anode materials for the rechargeable SIBs.Nevertheless,there are still enormous challenges in application of NTO,owing to its low intrinsic electronic conductivity and collapse of structure.The research on NTOs is still in its infancy;there are few conclusive reviews about the specific function of various modification methods.Herein,we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques.Our work provides effective guidance for promoting the continuous development,equipping NTOs in safety-critical systems,and lays a foundation for the development of NTO-anode materials in SIBs.
基金supported by the National Natural Science Foundation of China(Nos.52031008,51874211,21673162,51325102,U22B2071)the International Science and Technology Cooperation Program of China(No.2015DFA90750)the China Postdoctoral Science Foundation(No.2020M682468)。
文摘The corrosion inhibition efficacy of titanate(CaTiO_(3))for carbon anodes in molten salts was investigated through various analytical techniques,including linear sweep voltammetry,X-ray diffraction,scanning electron microscopy,and energy dispersion spectroscopy.The results demonstrate that the addition of CaTiO_(3)corrosion inhibitor efficiently passivates the carbon anode and leads to the formation of a dense CaTiO_(3)layer during the electrolysis process in molten CaCl_(2)-CaO.Subsequently,the passivated carbon anode effectively undergoes the oxygen evolution reaction,with an optimal current density for passivation identified at 400 m A/cm^(2).Comprehensive investigations,including CaTiO_(3)solubility tests in molten CaCl_(2)-CaO and numerical modeling of the stability of complex ionic structures,provide compelling evidence supporting“complexation-precipitation”passivation mechanism.This mechanism involves the initial formation of a complex containing TiO_(2)·nCaO by CaTiO_(3)and CaO,which subsequently decomposes to yield CaTiO_(3),firmly coating the surface of the carbon anode.In practical applications,the integration of CaTiO_(3)corrosion inhibitor with the carbon anode leads to the successful preparation of the FeCoNiCrMn high-entropy alloy without carbon contamination in the molten CaCl_(2)-CaO.
基金the support of the instrument and equipment fund of the Key Laboratory of Special Energy,Ministry of Education,Nanjing University of Science and Technology,China.
文摘The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate whisker(PTW,K_(2)Ti_(6)O_(13)),and after was incorporated into gun propellant as erosion-reducing and mechanical-reinforcing fillers.The interfacial characterizations results indicated that as-prepared PTW@PDA composites exhibits an enhanced surface compatible with propellant matrix,thereby facilitating their dispersion into propellants more effectively than raw PTW materials.Compared to original propellants,PTW@PDA-modified propellants exhibited significant less erosion,with a Ti-Kbased protective coating being detected on the eroded steel.And 0.5 wt%and 1.0 wt%addition of PTW@PDA significantly improved impact,compressive and tensile strength of propellants.Despite the inevitably reduction in relative force,PTW@PDA slightly increase propellant burning rate while exerting little adverse impact on propellant dynamic activity.This strategy can provide a promising alternative to develop high-energy gun propellant with less erosion and more mechanical strength.
基金The National Natural Science Foundation of China(No.52375563)the Science and Technology on Avionics Integration Laboratory(No.201913069001,20200055069001).
文摘To enhance the piezoelectric performance of piezoelectric polymer thin films in general,hybrid polyvinylidene difluoride(PVDF)and nanosized barium titanate(BaTiO_(3))piezoelectric films were prepared and their piezoelectric performance examined.The hybrid nanofibers were fabricated via electrospinning at an external voltage of 15 kV.The nonwoven fabrics were collected using a roller collection device,and their morphological structures were analyzed via scanning electron microscopy.The crystal structures of these piezoelectric films were characterized via micro-Raman spectroscopy.β-phase of the composite nanofiber membrane almost increased to twice owing to the addition of BaTiO_(3)nanoparticles.Compared with pure,electrospun PVDF piezoelectric film,the piezoelectric characteristics of the hybrid piezoelectric films were considerably enhanced because of the additional BaTiO_(3)nanoparticles.The maximum instantaneous open-circuit voltage of the hybrid PVDF-BaTiO_(3)nanofibers film can be high up to 80 V.The high-performance hybrid piezoelectric films exhibited notable prospects for applications in wearable electronic textiles.
基金Project(2009BAE80B01) supported by the Key Projects in the National Science and Technology Pillar Program During the11th Five-Year Plan Period,China
文摘The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.
基金Project(2007CB2097050)supported by the National Basic Research Program of ChinaProject(20803035)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘A sol-gel method using lauric acid as surfactant was used to synthesize Li4Ti5O12 nanocrystals with an ultra-fine particle size distribution between 120 and 250 nm.In order to obtain the electrode materials with the best electrochemical performance,the content of lauric acid during Li4Ti5O12 synthesis was systematically studied.The physical and electrochemical properties of the synthesized samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),laser particle size analysis,alternating current impedance(AC) and galvanostatic charge-discharge experiments.The highly dispersed Li4Ti5O12 nanocrystals obtained at 800 ℃ for 10 h can deliver a specific capacity of 163.3 mA-h/g at 1C rate without obvious capacity fade up to 50 cycles.The results suggest that well dispersed Li4Ti5O12 nanocrystals shorten the Li-ion diffusion length and enhance the electrochemical kinetics of the samples,which are very crucial to high rate capability.
文摘BaTiO3/polyurethane (BaTiO3/PU) nanocomposite elastomers were prepared from barium titanate nanoparticles, polyester polyol, 2, 4-toluene diisocyanate, 1,4-butanediol and 1, 1, 1-trimethanol propane by the one-step method. The density, hardness and dielectric constant of BaTiO3/PU nanocomposite elastomers increased with the increase of the content of BaTiO3 nanoparticles in nanocomposites. The electrostrictive properties of BaTiO3/PU nanocomposite elastomers were investigated by the digital speckle correlation method (DSCM). It was found that through the on-and-off of the electric field, the electrostrictive strains of BaTiO3/PU nanocomposite elastomers revealed corresponding shrinkage and recovery. The electrostrictive coefficient of BaTiO3/PU nanocomposite elastomers was greater than that of the corresponding polyurethane elastomers, and the electrostrictive coefficient of composites decreased with the increase of the content of barium titanate nanoparticles.
文摘The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure and morphology of Li4Ti4.95Ta0.05O12.Ta-doping does not change the phase composition and particle morphology,while improves remarkably its cycling stability at high charge/discharge rate.Li4Ti4.95Ta0.05O12 exhibits an excellent rate capability with a reversible capacity of 116.1 mA·h/g at 10C and even 91.0 mA·h/g at 30C.The substitution of Ta for Ti site can enhance the electronic conductivity of Li4Ti5O12 via the generation of mixing Ti4+/Ti3+,which indicates that Li4Ti4.95Ta0.05O12 is a promising candidate material for anodes in lithium-ion battery application.