期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多模态融合和自适应剪枝Transformer的脑肿瘤图像分割算法
被引量:
1
1
作者
姚宗亮
黄荣
+2 位作者
董爱华
韩芳
王青云
《宁夏大学学报(自然科学版)》
CAS
2024年第1期16-24,共9页
脑肿瘤是目前世界上最致命的肿瘤之一,所以脑肿瘤图像的自动分割在临床诊疗中变得日益重要.近年来,基于CNN和Transformer的脑肿瘤分割方法在医学图像分割领域取得了令人欣喜的成就.然而,大多数方法没有充分利用脑肿瘤多模态间的互补性...
脑肿瘤是目前世界上最致命的肿瘤之一,所以脑肿瘤图像的自动分割在临床诊疗中变得日益重要.近年来,基于CNN和Transformer的脑肿瘤分割方法在医学图像分割领域取得了令人欣喜的成就.然而,大多数方法没有充分利用脑肿瘤多模态间的互补性和差异性,并且模型中的Transformer在捕获远程依赖性的同时,忽略了其较大的计算复杂性、冗余依赖性等问题.针对此问题,提出一种基于多模态融合和自适应剪枝Transformer的脑肿瘤图像分割方法(MF-MAPT Swin UNETR),其中多模态融合模块可以充分学习性质相近的模态间信息和不同模态不同尺度的特征变化,为后续分割提供了充分的准备;基于多模态的自适应剪枝Transformer可以降低计算复杂度,对提升性能有一定的帮助,将MF-MAPT Swin UNETR模型在两个公共数据集上进行了实验验证,结果表明,该模型较最先进的方法整体具有突出的分割性能.
展开更多
关键词
脑肿瘤分割
TRANSFORMER
模态交叉连接
多尺度特征融合
token
融合
自适应剪枝
下载PDF
职称材料
多尺度注意力特征融合的单图像超分辨率研究
2
作者
沈学利
翟宇琦
+1 位作者
关刘美
苏婷
《计算机技术与发展》
2024年第7期31-39,共9页
高分辨率意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。基于生成对抗网络的图像超分辨率由于具有生成丰富细节的潜力,近年来受到越来越多的关注。针对现有的网络模型忽略从特征中学习本质纹理特征...
高分辨率意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。基于生成对抗网络的图像超分辨率由于具有生成丰富细节的潜力,近年来受到越来越多的关注。针对现有的网络模型忽略从特征中学习本质纹理特征和感受野有限的问题,基于Real-ESRGAN和多尺度注意力特征融合,对网络进行优化,将残差稠密块替换成大核分解和多尺度学习相结合模块与全局学习与下采样模块的双分支结构方法,提出一种多尺度注意力融合的单图像超分辨率重建算法,增强每个局部与全局令牌对之间的交互,从而形成更丰富和信息量更大的表示。对数据集进行2,3,4倍超分辨率重建实验,通过峰值信噪比(PSNR)、结构相似性(SSIM)对重建结果进行评价,与SRCNN、SRGAN、ACMF、MSRDN、WYD、LBW、YJX、Real-ESRGAN等方法进行对比。结果表明,该算法优于其他模型,且具有更好的直观视觉效果。
展开更多
关键词
生成对抗网络
图像超分辨率
多尺度注意力特征融合
大核分解
全局学习与下采样
令牌
下载PDF
职称材料
题名
基于多模态融合和自适应剪枝Transformer的脑肿瘤图像分割算法
被引量:
1
1
作者
姚宗亮
黄荣
董爱华
韩芳
王青云
机构
东华大学信息科学与技术学院
东华大学数字化纺织服装技术教育部工程研究中心
宁夏大学数学统计学院
北京航空航天大学动力学与控制系
出处
《宁夏大学学报(自然科学版)》
CAS
2024年第1期16-24,共9页
基金
国家自然科学基金资助项目(12272092,62001099)。
文摘
脑肿瘤是目前世界上最致命的肿瘤之一,所以脑肿瘤图像的自动分割在临床诊疗中变得日益重要.近年来,基于CNN和Transformer的脑肿瘤分割方法在医学图像分割领域取得了令人欣喜的成就.然而,大多数方法没有充分利用脑肿瘤多模态间的互补性和差异性,并且模型中的Transformer在捕获远程依赖性的同时,忽略了其较大的计算复杂性、冗余依赖性等问题.针对此问题,提出一种基于多模态融合和自适应剪枝Transformer的脑肿瘤图像分割方法(MF-MAPT Swin UNETR),其中多模态融合模块可以充分学习性质相近的模态间信息和不同模态不同尺度的特征变化,为后续分割提供了充分的准备;基于多模态的自适应剪枝Transformer可以降低计算复杂度,对提升性能有一定的帮助,将MF-MAPT Swin UNETR模型在两个公共数据集上进行了实验验证,结果表明,该模型较最先进的方法整体具有突出的分割性能.
关键词
脑肿瘤分割
TRANSFORMER
模态交叉连接
多尺度特征融合
token
融合
自适应剪枝
Keywords
brain tumor segmentation
Transformer
modal cross-connection
multi-scale feature
fusion
token fusion
adaptive pruning
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
多尺度注意力特征融合的单图像超分辨率研究
2
作者
沈学利
翟宇琦
关刘美
苏婷
机构
辽宁工程技术大学软件学院
出处
《计算机技术与发展》
2024年第7期31-39,共9页
基金
国家自然科学基金资助项目(62173171)。
文摘
高分辨率意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。基于生成对抗网络的图像超分辨率由于具有生成丰富细节的潜力,近年来受到越来越多的关注。针对现有的网络模型忽略从特征中学习本质纹理特征和感受野有限的问题,基于Real-ESRGAN和多尺度注意力特征融合,对网络进行优化,将残差稠密块替换成大核分解和多尺度学习相结合模块与全局学习与下采样模块的双分支结构方法,提出一种多尺度注意力融合的单图像超分辨率重建算法,增强每个局部与全局令牌对之间的交互,从而形成更丰富和信息量更大的表示。对数据集进行2,3,4倍超分辨率重建实验,通过峰值信噪比(PSNR)、结构相似性(SSIM)对重建结果进行评价,与SRCNN、SRGAN、ACMF、MSRDN、WYD、LBW、YJX、Real-ESRGAN等方法进行对比。结果表明,该算法优于其他模型,且具有更好的直观视觉效果。
关键词
生成对抗网络
图像超分辨率
多尺度注意力特征融合
大核分解
全局学习与下采样
令牌
Keywords
generative adversarial network
image super-resolution
multi-scale attention feature
fusion
large kernel decomposition
global learning and down-sampling
token
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多模态融合和自适应剪枝Transformer的脑肿瘤图像分割算法
姚宗亮
黄荣
董爱华
韩芳
王青云
《宁夏大学学报(自然科学版)》
CAS
2024
1
下载PDF
职称材料
2
多尺度注意力特征融合的单图像超分辨率研究
沈学利
翟宇琦
关刘美
苏婷
《计算机技术与发展》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部