We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural tra...We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase.The electric resistivity exhibits a metal-to-insulatorlike transition at around 100 K,and then develops a plateau at low temperature,which might be related to the protected topologically conducting surface states.Our first-principles calculation confirms further that NaZn_(4)As_(3) is a topological insulator(TI) for both different phases rather than a previously proposed TSM.The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated.Furthermore,an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K.The large thermopower and moderate κ indicate that NaZn_(4)As_(3) and/or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance.展开更多
Materials,where charge carriers have a linear energy dispersion,usually exhibit a strong nonlinear optical response in the absence of disorder scattering.This nonlinear response is particularly interesting in the tera...Materials,where charge carriers have a linear energy dispersion,usually exhibit a strong nonlinear optical response in the absence of disorder scattering.This nonlinear response is particularly interesting in the terahertz frequency region.We present a theoretical and numerical investigation of charge transport and nonlinear effects,such as the high harmonic generation in topological materials including Weyl semimetals(WSMs)and α-T_(3)systems.The nonlinear optical conductivity is calculated both semi-classically using the velocity operator and quantum mechanically using the density matrix.We show that the nonlinear response is strongly dependent on temperature and topological parameters,such as the Weyl point(WP)separation b and Berry phase ФB.A finite spectral gap opening can further modify the nonlinear effects.Under certain parameters,universal behaviors of both the linear and nonlinear response can be observed.Coupled with experimentally accessible critical field values of 10^(4)-10^(5) V=m,our results provide useful information on developing nonlinear optoelectronic devices based on topological materials.展开更多
Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles.Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility ...Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles.Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials.In this paper,we report the synthesis of high quality single crystals of BaMnBi;and investigate the transport properties of the samples.BaMnBi;is a metal with an antiferromagnetic transition at T;= 288 K.The temperature dependence of magnetization displays different behavior from CaMnBi;and SrMnBi;,which suggests the possible different magnetic structure of BaMnBi;.The Hall data reveals electron-type carriers and a mobility μ(5K)= 1500 cm;/V·s.Angle-dependent magnetoresistance reveals the quasi-two-dimensional(2D) Fermi surface in BaMnBi;- A crossover from semiclassical MR;dependence in low field to MR;dependence in high field,which is attributed to the quantum limit of Dirac fermions,has been observed in magnetoresistance.Our results indicate the existence of Dirac fermions in BaMnBi;.展开更多
It has long been noticed that special lattices contain single-electron flat bands (FB) without any dispersion. Since the kinetic energy of electrons is quenched in the FB, this highly degenerate energy level becomes...It has long been noticed that special lattices contain single-electron flat bands (FB) without any dispersion. Since the kinetic energy of electrons is quenched in the FB, this highly degenerate energy level becomes an ideal platform to achieve strongly correlated electronic states, such as magnetism, superconductivity, and Wigner crystal. Recently, the FB has attracted increasing interest because of the possibility to go beyond the conventional symmetry-breaking phases towards topologically ordered phases, such as lattice versions of fractional quantum Hall states. This article reviews different aspects of FBs in a nutshell. Starting from the standard band theory, we aim to bridge the frontier of FBs with the textbook solid- state physics. Then, based on concrete examples, we show the common origin of FBs in terms of destructive interference, and discuss various many-body phases associated with such a singular band structure. In the end, we demonstrate real FBs in quantum frustrated materials and organometallic frameworks.展开更多
Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states pr...Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges.Here,we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC.The splitter is compact and configurable,has high trans-mission efficiency,and allows for multi-channel utilization,crosstalk-proof,and robust against defects and obstacles.This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC.When we combine two rectangular antichiral GPCs holding left-and right-propagating antichiral one-way edge states respectively,bidirectionally radiating one-way edge states at two paral-lel zigzag edges can be achieved.Our observations can enrich the understanding of fundamental physics and expand to-pological photonic applications.展开更多
High resolution angle resolved photoemission measurements and band structure calculations are carried out to study the electronic structure of BaMnSb_(2). All the observed bands are nearly linear that extend to a wide...High resolution angle resolved photoemission measurements and band structure calculations are carried out to study the electronic structure of BaMnSb_(2). All the observed bands are nearly linear that extend to a wide energy range. The measured Fermi surface mainly consists of one hole pocket around Γ and a strong spot at Y which are formed from the crossing points of the linear bands. The measured electronic structure of BaMnSb_(2) is unusual and deviates strongly from the band structure calculations. These results will stimulate further efforts to theoretically understand the electronic structure of BaMnSb_(2) and search for novel properties in this Dirac material.展开更多
The van der Waals(vdW)MnSb4Te7is a newly synthesized antiferromagnetic(AFM)topological insulator hosting a robust axion insulator state irrelative to the specific spin structure.However,the intrinsic hole doped charac...The van der Waals(vdW)MnSb4Te7is a newly synthesized antiferromagnetic(AFM)topological insulator hosting a robust axion insulator state irrelative to the specific spin structure.However,the intrinsic hole doped character of MnSb_4Te_7makes the Fermi level far away from the Dirac point of about 180 meV,which is unfavorable for the exploration of exotic topological properties such as the quantum anomalous Hall effect(QAHE).To shift up the Fermi level close to the Dirac point,the strategy of partially replacing Sb with Bi as Mn(Sb_(1-x)Bi_(x))_(4)Te_(7)was tried and the magnetotransport properties,in particular,the anomalous Hall effect,were measured and analyzed.Through the electron doping,the anomalous Hall conductanceσAH changes from negative to positive between x=0.3 and 0.5,indicative of a possible topological transition.Besides,a charge neutrality point(CNP)also appears between x=0.6 and 0.7.The results would be instructive for further understanding the interplay between nontrivial topological states and the magnetism,as well as for the exploration of exotic topological properties.展开更多
Recently,Chern insulators in an antiferromagnetic(AFM)phase have been suggested theoretically and predicted in a few materials.However,the experimental observation of two-dimensional(2D)AFM quantum anomalous Hall effe...Recently,Chern insulators in an antiferromagnetic(AFM)phase have been suggested theoretically and predicted in a few materials.However,the experimental observation of two-dimensional(2D)AFM quantum anomalous Hall effect is still a challenge to date.In this work,we propose that an AFM Chern insulator can be realized in a 2D monolayer of NiOsCl_(6)modulated by a compressive strain.Strain modulation is accessible experimentally and used widely in predicting and tuning topological nontrivial phases.With first-principles calculations,we have investigated the structural,magnetic,and electronic properties of NiOsCl_(6).Its stability has been confirmed through molecular dynamical simulations,elasticity constant,and phonon spectrum.It has a collinear AFM order,with opposite magnetic moments of 1.3μBon each Ni/Os atom,respectively,and the Neel temperature is estimated to be 93 K.In the absence of strain,it functions as an AFM insulator with a direct gap with spin-orbital coupling included.Compressive strain will induce a transition from a normal insulator to a Chern insulator characterized by a Chern number C=1,with a band gap of about 30 meV.This transition is accompanied by a structural distortion.Remarkably,the Chern insulator phase persists within the 3%-10%compressive strain range,offering an alternative platform for the utilization of AFM materials in spintronic devices.展开更多
The interplay of magnetic and semiconducting properties has been in the focus for more than a half of the century. In this introductory article we briefly review the key properties and functionalities of various magne...The interplay of magnetic and semiconducting properties has been in the focus for more than a half of the century. In this introductory article we briefly review the key properties and functionalities of various magnetic semiconductor families, including europium chalcogenides, chromium spinels, dilute magnetic semiconductors, dilute ferromagnetic semiconductors and insulators, mentioning also sources of non-uniformities in the magnetization distribution, accounting for an apparent high Curie temperature ferromagnetism in many systems. Our survey is carried out from today's perspective of ferromagnetic and antiferromagnetic spintronics as well as of the emerging fields of magnetic topological materials and atomically thin 2D layers.展开更多
Helicity-dependent ultrafast spin current generated by circularly polarized photons in topological materials holds the crux to many technological improvements,such as quantum communications,on-chip communication proce...Helicity-dependent ultrafast spin current generated by circularly polarized photons in topological materials holds the crux to many technological improvements,such as quantum communications,on-chip communication processing and storage.Here,we present the manipulation of helicity-dependent terahertz emission generated in a nodal line semimetal candidate Mg3Bi2 by using photon polarization states.The terahertz emission is mainly ascribed to the helicity-dependent photocurrent that is originated from circular photogalvanic effects,and the helicity-independent photocurrent that is attributed to linear photogalvanic effect.Our work will inspire more explorations into novel nodal line semimetals and open up new opportunities for developing ultrafast optoelectronics in the topological system.展开更多
Magnetic topological states of matter provide a fertile playground for emerging topological physics and phenomena.The current main focus is on materials whose magnetism stems from 3d magnetic transition elements,e.g.,...Magnetic topological states of matter provide a fertile playground for emerging topological physics and phenomena.The current main focus is on materials whose magnetism stems from 3d magnetic transition elements,e.g.,MnBi_(2)Te_(4),Fe_(3)Sn_(2),and Co_(3)Sn_(2)S_(2).In contrast,topological materials with the magnetism from rare earth elements remain largely unexplored.Here we report rare earth antiferromagnet GdAuAl_(4)Ge_(2)as a candidate magnetic topological metal.Angle resolved photoemission spectroscopy(ARPES)and first-principles calculations have revealed multiple bulk bands crossing the Fermi level and pairs of low energy surface states.According to the parity and Wannier charge center analyses,these bulk bands possess nontrivial Z2 topology,establishing a strong topological insulator state in the nonmagnetic phase.Furthermore,the surface band pairs exhibit strong termination dependence which provides insight into their origin.Our results suggest GdAuAl_(4)Ge_(2)as a rare earth platform to explore the interplay between band topology,magnetism and f electron correlation,calling for further study targeting on its magnetic structure,magnetic topology state,transport behavior,and microscopic properties.展开更多
Here the notion of geometric phase acquired by an electron in a one-dimensional periodic lattice as it traverses the Bloch band is carefully studied. Such a geometric phase is useful in characterizing the topological ...Here the notion of geometric phase acquired by an electron in a one-dimensional periodic lattice as it traverses the Bloch band is carefully studied. Such a geometric phase is useful in characterizing the topological properties and the electric polarization of the periodic system. An expression for this geometric phase was first provided by Zak, in a celebrated work three decades ago. Unfortunately, Zak’s expression suffers from two shortcomings: its value depends upon the choice of origin of the unit cell, and is gauge dependent. Upon careful investigation of the time evolution of the system, here we find that the system displays cyclicity in a generalized sense wherein the physical observables return in the course of evolution, rather than the density matrix. Recognition of this generalized cyclicity paves the way for a correct and consistent expression for the geometric phase in this system, christened as Pancharatnam-Zak phase. Pancharatnam-Zak geometric phase does not suffer from the shortcomings of Zak’s expression, and correctly classifies the Bloch bands of the lattice. A naturally filled band extension of the Pancharatnam-Zak phase is also constructed and studied.展开更多
Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to...Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to simultaneously determine the optimal layout of the piezoelectric energy harvesting devices and the optimal position of the mass loading.The objective function is to maximize the energy harvesting performance over a range of vibration frequencies.Pseudo excitation method (PEM) is adopted to analyze structural stationary random responses,and sensitivity analysis is then performed by using the adjoint method.Numerical examples are presented to demonstrate the validity of the proposed approach.展开更多
In recent years,topological quantum materials(TQMs)have attracted intensive attention in the area of condensed matter physics due to their novel topologies and their promising applications in quantum computing,spin el...In recent years,topological quantum materials(TQMs)have attracted intensive attention in the area of condensed matter physics due to their novel topologies and their promising applications in quantum computing,spin electronics and next-generation integrated circuits.Scanning tunneling microscopy/spectroscopy(STM/STS)is regarded as a powerful technique to characterize the local density of states with atomic resolution,which is ideally suited to the measurement of the bulk-boundary correspondence of TQMs.In this review,using STM/STS,we focus on recent research on bismuth-based TQMs,including quantum-spin Hall insulators,3D weak topological insulators(TIs),high-order TIs,topological Dirac semi-metals and dual TIs.Efficient methods for the modulation of the topological properties of the TQMs are introduced,such as interlayer interaction,thickness variation and local electric field perturbation.Finally,the challenges and prospects for this field of study are discussed.展开更多
Topological materials, hosting topological nontrivial electronic band, have attracted widespread attentions. As an application of topology in physics, the discovery and study of topological materials not only enrich t...Topological materials, hosting topological nontrivial electronic band, have attracted widespread attentions. As an application of topology in physics, the discovery and study of topological materials not only enrich the existing theoretical framework of physics, but also provide fertile ground for investigations on low energy excitations, such as Weyl fermions and Majorana fermions, which have not been observed yet as fundamental particles. These quasiparticles with exotic physical properties make topological materials the cutting edge of scientific research and a new favorite of high tech. As a typical example, Majorana fermions, predicted to exist in the edge state of topological superconductors, are proposed to implement topological error-tolerant quantum computers. Thus, the detection of topological superconductivity has become a frontier in condensed matter physics and materials science. Here, we review a way to detect topological superconductivity triggered by the hard point contact: tip-induced superconductivity(TISC) and tip-enhanced superconductivity(TESC). The TISC refers to the superconductivity induced by a non-superconducting tip at the point contact on non-superconducting materials. We take the elaboration of the chief experimental achievement of TISC in topological Dirac semimetal Cd_3As_2 and Weyl semimetal Ta As as key components of this article for detecting topological superconductivity. Moreover, we also briefly introduce the main results of another exotic effect, TESC, in superconducting Au_2Pb and Sr_2RuO_4 single crystals, which are respectively proposed as the candidates of helical topological superconductor and chiral topological superconductor. Related results and the potential mechanism are conducive to improving the comprehension of how to induce and enhance the topological superconductivity.展开更多
Electrocatalytic materials are a critical bottleneck for the development of new energy economics.This review summarizes the unique physicochemical properties of topological,magnetic,and rare earth materials and their ...Electrocatalytic materials are a critical bottleneck for the development of new energy economics.This review summarizes the unique physicochemical properties of topological,magnetic,and rare earth materials and their applications in the functionalization of electrocatalysts.Topological materials have unique band structures and geometric structures,and the interface difference in charge transport structures can give rise to topological insulators,topological superconductors,and Dirac metals.Magnetic materials possess distinctive electron spin-splitting configurations,and varying spin strengths induce disparate impacts on the intermediate equilibrium adsorption capability.Rare earth materials have unique f-electron roaming properties,broad atomic radius,and f-orbital configurations,which typically confer notable advantages in oxygen reduction reactions.Furthermore,the catalytic performance exhibits significant differences under an external alternating electric,thermal,and magnetic field.These new materials show great potential in the re-functionalization of electrocatalytic materials and are expected to lead the development of the next generation of emerging energy materials.展开更多
One-dimensional(1D)gapless hinge states are predicated in the three-dimensional(3D)higher-order topological insulators and topological semimetals,because of the higher-order bulk-boundary correspondence.Nevertheless,t...One-dimensional(1D)gapless hinge states are predicated in the three-dimensional(3D)higher-order topological insulators and topological semimetals,because of the higher-order bulk-boundary correspondence.Nevertheless,the topologically protected property of the hinge states is still not demonstrated so far,because it is not accessible by conventional methods,such as spectroscopy experiments and quantum oscillations.Here,we reveal the topological nature of hinge states in the higher-order topological semimetal Cd;As;nanoplate through spin potentiometric measurements.The results of current induced spin polarization indicate that the spin-momentum locking of the higher-order hinge state is similar to that of the quantum spin Hall state,showing the helical characteristics.The spin-polarized hinge states are robust up to room temperature and can nonlocally diffuse a long distance larger than 5μm,further indicating their immunity protected by topology.Our work deepens the understanding of transport properties of the higher-order topological materials and should be valuable for future electronic and spintronic applications.展开更多
The origin of superconductivity observed at the point contact between the normal metal tip and the topological material remains uncertain due to the potential presence of superconducting elements or allotropes impurit...The origin of superconductivity observed at the point contact between the normal metal tip and the topological material remains uncertain due to the potential presence of superconducting elements or allotropes impurities.It is imperative to seek out a topological material entirely free of superconducting impurities and induce superconductivity between it and normal tips to verify the source of the induced superconductivity.Here,we report the observation of superconductivity up to 9 K induced at point contacts between normal metal tips and the topological material grey arsenic,which is free of superconductivity.The determined temperature dependencies of superconducting gapsΔ(T)deviate from the Bardeen-Cooper-Schriefer(BCS)superconductivity law,exhibiting abnormal behavior.Furthermore,the highly anisotropic upper critical field H_(c2)(T)suggests the anisotropy of the projected interfacial Fermi surface.By tuning the junction resistance,we obtained a negative correlation between the superconducting gapΔand the efective barrier height Z,which validates the interfacial coupling strength as a key factor in the observed tip-induced superconductivity.These experimental results provide guidance for the relevant theory about tip-induced superconductivity on topological materials.展开更多
An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber rein...An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error(LSE) between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization(SIMP) model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle(UAV) field.展开更多
Weyl semimetals are topological materials whose electron quasiparticles obey the Weyl equation.They possess many unusual properties that may lead to new applications.This is a tutorial review of the optical properties...Weyl semimetals are topological materials whose electron quasiparticles obey the Weyl equation.They possess many unusual properties that may lead to new applications.This is a tutorial review of the optical properties and applications of Weyl semimetals.We review the basic concepts and optical responses of Weyl semimetals,and survey their applications in optics and thermal photonics.We hope this pedagogical text will motivate further research on this emerging topic.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11874417 and 12274440)the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33010100)the Fund from the Ministry of Science and Technology of China (Grant No. 2022YFA1403903)。
文摘We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase.The electric resistivity exhibits a metal-to-insulatorlike transition at around 100 K,and then develops a plateau at low temperature,which might be related to the protected topologically conducting surface states.Our first-principles calculation confirms further that NaZn_(4)As_(3) is a topological insulator(TI) for both different phases rather than a previously proposed TSM.The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated.Furthermore,an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K.The large thermopower and moderate κ indicate that NaZn_(4)As_(3) and/or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance.
文摘Materials,where charge carriers have a linear energy dispersion,usually exhibit a strong nonlinear optical response in the absence of disorder scattering.This nonlinear response is particularly interesting in the terahertz frequency region.We present a theoretical and numerical investigation of charge transport and nonlinear effects,such as the high harmonic generation in topological materials including Weyl semimetals(WSMs)and α-T_(3)systems.The nonlinear optical conductivity is calculated both semi-classically using the velocity operator and quantum mechanically using the density matrix.We show that the nonlinear response is strongly dependent on temperature and topological parameters,such as the Weyl point(WP)separation b and Berry phase ФB.A finite spectral gap opening can further modify the nonlinear effects.Under certain parameters,universal behaviors of both the linear and nonlinear response can be observed.Coupled with experimentally accessible critical field values of 10^(4)-10^(5) V=m,our results provide useful information on developing nonlinear optoelectronic devices based on topological materials.
基金supported by the National Natural Science Foundation of China(Grant No.11574391)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.14XNLQ07)
文摘Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles.Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials.In this paper,we report the synthesis of high quality single crystals of BaMnBi;and investigate the transport properties of the samples.BaMnBi;is a metal with an antiferromagnetic transition at T;= 288 K.The temperature dependence of magnetization displays different behavior from CaMnBi;and SrMnBi;,which suggests the possible different magnetic structure of BaMnBi;.The Hall data reveals electron-type carriers and a mobility μ(5K)= 1500 cm;/V·s.Angle-dependent magnetoresistance reveals the quasi-two-dimensional(2D) Fermi surface in BaMnBi;- A crossover from semiclassical MR;dependence in low field to MR;dependence in high field,which is attributed to the quantum limit of Dirac fermions,has been observed in magnetoresistance.Our results indicate the existence of Dirac fermions in BaMnBi;.
基金supported by the Department Of Energy,Office of Basic Energy Sciences,USA (Grant No. DE-FG02-03ER46027)the U.S. Natural Science Foundation (Grant No. PHY-1068558)
文摘It has long been noticed that special lattices contain single-electron flat bands (FB) without any dispersion. Since the kinetic energy of electrons is quenched in the FB, this highly degenerate energy level becomes an ideal platform to achieve strongly correlated electronic states, such as magnetism, superconductivity, and Wigner crystal. Recently, the FB has attracted increasing interest because of the possibility to go beyond the conventional symmetry-breaking phases towards topologically ordered phases, such as lattice versions of fractional quantum Hall states. This article reviews different aspects of FBs in a nutshell. Starting from the standard band theory, we aim to bridge the frontier of FBs with the textbook solid- state physics. Then, based on concrete examples, we show the common origin of FBs in terms of destructive interference, and discuss various many-body phases associated with such a singular band structure. In the end, we demonstrate real FBs in quantum frustrated materials and organometallic frameworks.
基金the National Natural Science Foundation of China(11974119)Science and Technology Project of Guangdong(2020B010190001)+1 种基金Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06C594)National Key R&D Program of China(2018YFA 0306200).
文摘Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges.Here,we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC.The splitter is compact and configurable,has high trans-mission efficiency,and allows for multi-channel utilization,crosstalk-proof,and robust against defects and obstacles.This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC.When we combine two rectangular antichiral GPCs holding left-and right-propagating antichiral one-way edge states respectively,bidirectionally radiating one-way edge states at two paral-lel zigzag edges can be achieved.Our observations can enrich the understanding of fundamental physics and expand to-pological photonic applications.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300600, 2018YFA0305602, 2016YFA0300300,2017YFA0302900)the National Natural Science Foundation of China (Grant Nos. 11974404, 11888101, 11922414, and 11404175)+8 种基金the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB33000000 and XDB25000000)the Youth Innovation Promotion Association of CAS (Grant No. 2017013)the Natural Science Foundation of Henan Province,China (Grant Nos. 182300410274 and 202300410296)The theoretical calculations are supported by the National Natural Science Foundation of China (Grant Nos. 11674369, 11865019, and 11925408)the Beijing Natural Science Foundation,China (Grant No. Z180008)Beijing Municipal Science and Technology Commission,China (Grant No. Z191100007219013)the National Key Research and Development Program of China (Grant Nos. 2016YFA0300600 and 2018YFA0305700)the K. C. Wong Education Foundation (Grant No. GJTD-2018-01)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000)。
文摘High resolution angle resolved photoemission measurements and band structure calculations are carried out to study the electronic structure of BaMnSb_(2). All the observed bands are nearly linear that extend to a wide energy range. The measured Fermi surface mainly consists of one hole pocket around Γ and a strong spot at Y which are formed from the crossing points of the linear bands. The measured electronic structure of BaMnSb_(2) is unusual and deviates strongly from the band structure calculations. These results will stimulate further efforts to theoretically understand the electronic structure of BaMnSb_(2) and search for novel properties in this Dirac material.
基金the Shanghai Science and Technology Innovation Action Plan(Grant No.21JC1402000)the National Natural Science Foundation of China(Grant No.12004405)+3 种基金the State Key Laboratory of Functional Materials for Informatics(Grant No.SKL2022)the Double FirstClass Initiative Fund of ShanghaiTech University,the Analytical Instrumentation Center(Grant No.SPST-AIC10112914)SPST,and ShanghaiTech Universitythe State Key Laboratory of Surface Physics and Department of Physics of Fudan University(Grant No.KF2022_13)。
文摘The van der Waals(vdW)MnSb4Te7is a newly synthesized antiferromagnetic(AFM)topological insulator hosting a robust axion insulator state irrelative to the specific spin structure.However,the intrinsic hole doped character of MnSb_4Te_7makes the Fermi level far away from the Dirac point of about 180 meV,which is unfavorable for the exploration of exotic topological properties such as the quantum anomalous Hall effect(QAHE).To shift up the Fermi level close to the Dirac point,the strategy of partially replacing Sb with Bi as Mn(Sb_(1-x)Bi_(x))_(4)Te_(7)was tried and the magnetotransport properties,in particular,the anomalous Hall effect,were measured and analyzed.Through the electron doping,the anomalous Hall conductanceσAH changes from negative to positive between x=0.3 and 0.5,indicative of a possible topological transition.Besides,a charge neutrality point(CNP)also appears between x=0.6 and 0.7.The results would be instructive for further understanding the interplay between nontrivial topological states and the magnetism,as well as for the exploration of exotic topological properties.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104183,52173283,and 62071200)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2021MA040 and ZR2023MA091)+2 种基金the Taishan Scholar Program of Shandong Province,China(Grant No.ts20190939)the Independent Cultivation Program of Innovation Team of Jinan City(Grant No.2021GXRC043)supported by high-performance computing platform at University of Jinan。
文摘Recently,Chern insulators in an antiferromagnetic(AFM)phase have been suggested theoretically and predicted in a few materials.However,the experimental observation of two-dimensional(2D)AFM quantum anomalous Hall effect is still a challenge to date.In this work,we propose that an AFM Chern insulator can be realized in a 2D monolayer of NiOsCl_(6)modulated by a compressive strain.Strain modulation is accessible experimentally and used widely in predicting and tuning topological nontrivial phases.With first-principles calculations,we have investigated the structural,magnetic,and electronic properties of NiOsCl_(6).Its stability has been confirmed through molecular dynamical simulations,elasticity constant,and phonon spectrum.It has a collinear AFM order,with opposite magnetic moments of 1.3μBon each Ni/Os atom,respectively,and the Neel temperature is estimated to be 93 K.In the absence of strain,it functions as an AFM insulator with a direct gap with spin-orbital coupling included.Compressive strain will induce a transition from a normal insulator to a Chern insulator characterized by a Chern number C=1,with a band gap of about 30 meV.This transition is accompanied by a structural distortion.Remarkably,the Chern insulator phase persists within the 3%-10%compressive strain range,offering an alternative platform for the utilization of AFM materials in spintronic devices.
基金supported by the Foundation for Polish Science through the IRA Programme financed by EU within SG OP Programmesupport by the Austrian Science Foundation-FWF (P31423 and P26830)the Austrian Exchange Service (OAD) Project PL-01/2017
文摘The interplay of magnetic and semiconducting properties has been in the focus for more than a half of the century. In this introductory article we briefly review the key properties and functionalities of various magnetic semiconductor families, including europium chalcogenides, chromium spinels, dilute magnetic semiconductors, dilute ferromagnetic semiconductors and insulators, mentioning also sources of non-uniformities in the magnetization distribution, accounting for an apparent high Curie temperature ferromagnetism in many systems. Our survey is carried out from today's perspective of ferromagnetic and antiferromagnetic spintronics as well as of the emerging fields of magnetic topological materials and atomically thin 2D layers.
基金We thank Prof.J.B.Qi for helpful discussions and are grateful for financial support from the National Natural Science Foundation of China(Grant Nos.11804387,11802339,11805276,11902358,61805282,and 61801498)the Scientific Researches Foundation of National University of Defense Technology(Grant Nos.ZK18-03-22,ZK18-01-03 and ZK18-03-36).
文摘Helicity-dependent ultrafast spin current generated by circularly polarized photons in topological materials holds the crux to many technological improvements,such as quantum communications,on-chip communication processing and storage.Here,we present the manipulation of helicity-dependent terahertz emission generated in a nodal line semimetal candidate Mg3Bi2 by using photon polarization states.The terahertz emission is mainly ascribed to the helicity-dependent photocurrent that is originated from circular photogalvanic effects,and the helicity-independent photocurrent that is attributed to linear photogalvanic effect.Our work will inspire more explorations into novel nodal line semimetals and open up new opportunities for developing ultrafast optoelectronics in the topological system.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403700)the National Natural Science Foundation of China (Grant No. 12074163)+2 种基金the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grants Nos. 2022B1515020046, 2022B1515130005, and 2021B1515130007)the Innovative and Entrepreneurial Research Team Program of Guangdong Province, China (Grant Nos. 2019ZT08C044)Shenzhen Science and Technology Program (Grant No. KQTD20190929173815000)
文摘Magnetic topological states of matter provide a fertile playground for emerging topological physics and phenomena.The current main focus is on materials whose magnetism stems from 3d magnetic transition elements,e.g.,MnBi_(2)Te_(4),Fe_(3)Sn_(2),and Co_(3)Sn_(2)S_(2).In contrast,topological materials with the magnetism from rare earth elements remain largely unexplored.Here we report rare earth antiferromagnet GdAuAl_(4)Ge_(2)as a candidate magnetic topological metal.Angle resolved photoemission spectroscopy(ARPES)and first-principles calculations have revealed multiple bulk bands crossing the Fermi level and pairs of low energy surface states.According to the parity and Wannier charge center analyses,these bulk bands possess nontrivial Z2 topology,establishing a strong topological insulator state in the nonmagnetic phase.Furthermore,the surface band pairs exhibit strong termination dependence which provides insight into their origin.Our results suggest GdAuAl_(4)Ge_(2)as a rare earth platform to explore the interplay between band topology,magnetism and f electron correlation,calling for further study targeting on its magnetic structure,magnetic topology state,transport behavior,and microscopic properties.
文摘Here the notion of geometric phase acquired by an electron in a one-dimensional periodic lattice as it traverses the Bloch band is carefully studied. Such a geometric phase is useful in characterizing the topological properties and the electric polarization of the periodic system. An expression for this geometric phase was first provided by Zak, in a celebrated work three decades ago. Unfortunately, Zak’s expression suffers from two shortcomings: its value depends upon the choice of origin of the unit cell, and is gauge dependent. Upon careful investigation of the time evolution of the system, here we find that the system displays cyclicity in a generalized sense wherein the physical observables return in the course of evolution, rather than the density matrix. Recognition of this generalized cyclicity paves the way for a correct and consistent expression for the geometric phase in this system, christened as Pancharatnam-Zak phase. Pancharatnam-Zak geometric phase does not suffer from the shortcomings of Zak’s expression, and correctly classifies the Bloch bands of the lattice. A naturally filled band extension of the Pancharatnam-Zak phase is also constructed and studied.
基金supported by the National Basic Research Pro-gram of China (2011CB610304)the National Science & Technology Major Project (2009ZX04014-034)the ResearchFund for the Doctoral Program of Higher Education of China (20090041110023)
文摘Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to simultaneously determine the optimal layout of the piezoelectric energy harvesting devices and the optimal position of the mass loading.The objective function is to maximize the energy harvesting performance over a range of vibration frequencies.Pseudo excitation method (PEM) is adopted to analyze structural stationary random responses,and sensitivity analysis is then performed by using the adjoint method.Numerical examples are presented to demonstrate the validity of the proposed approach.
基金supported by the Beijing Municipal Natural Science Foundation(Grant No.Z180007)the National Natural Science Foundation of China(Grant Nos.11874003,11904015 and 52073006)the Australian Research Council(ARC)(LP180100722).
文摘In recent years,topological quantum materials(TQMs)have attracted intensive attention in the area of condensed matter physics due to their novel topologies and their promising applications in quantum computing,spin electronics and next-generation integrated circuits.Scanning tunneling microscopy/spectroscopy(STM/STS)is regarded as a powerful technique to characterize the local density of states with atomic resolution,which is ideally suited to the measurement of the bulk-boundary correspondence of TQMs.In this review,using STM/STS,we focus on recent research on bismuth-based TQMs,including quantum-spin Hall insulators,3D weak topological insulators(TIs),high-order TIs,topological Dirac semi-metals and dual TIs.Efficient methods for the modulation of the topological properties of the TQMs are introduced,such as interlayer interaction,thickness variation and local electric field perturbation.Finally,the challenges and prospects for this field of study are discussed.
基金financially supported by the National Program on Key Basic Research Project(2018YFA0305604 and 2017YFA0303302)National Natural Science Foundation of China(11774008,381/0401210001)+2 种基金the Key Research Program of the Chinese Academy of Sciences(XDPB08-2)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University(KF201703)China Postdoctoral Science Foundation(130/0401130005)
文摘Topological materials, hosting topological nontrivial electronic band, have attracted widespread attentions. As an application of topology in physics, the discovery and study of topological materials not only enrich the existing theoretical framework of physics, but also provide fertile ground for investigations on low energy excitations, such as Weyl fermions and Majorana fermions, which have not been observed yet as fundamental particles. These quasiparticles with exotic physical properties make topological materials the cutting edge of scientific research and a new favorite of high tech. As a typical example, Majorana fermions, predicted to exist in the edge state of topological superconductors, are proposed to implement topological error-tolerant quantum computers. Thus, the detection of topological superconductivity has become a frontier in condensed matter physics and materials science. Here, we review a way to detect topological superconductivity triggered by the hard point contact: tip-induced superconductivity(TISC) and tip-enhanced superconductivity(TESC). The TISC refers to the superconductivity induced by a non-superconducting tip at the point contact on non-superconducting materials. We take the elaboration of the chief experimental achievement of TISC in topological Dirac semimetal Cd_3As_2 and Weyl semimetal Ta As as key components of this article for detecting topological superconductivity. Moreover, we also briefly introduce the main results of another exotic effect, TESC, in superconducting Au_2Pb and Sr_2RuO_4 single crystals, which are respectively proposed as the candidates of helical topological superconductor and chiral topological superconductor. Related results and the potential mechanism are conducive to improving the comprehension of how to induce and enhance the topological superconductivity.
基金supported by the National Natural Science Foundation of China (Grant Nos.52203303,52220105010,M-0755)the Natural Science Foundation of Guangdong Province (Grant No.2022A1515010076)+3 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ZD35)the SIAT Innovation Program for Excellent Young Researchers (Grant No.E2G017)the CAS president’s international fellowship initiative grant (Grant Nos.2022VEA0011,2022VEA0016,2022VEA0017)the Shenzhen Science and Technology Program (Grant No.SGDX20211123151002003)。
文摘Electrocatalytic materials are a critical bottleneck for the development of new energy economics.This review summarizes the unique physicochemical properties of topological,magnetic,and rare earth materials and their applications in the functionalization of electrocatalysts.Topological materials have unique band structures and geometric structures,and the interface difference in charge transport structures can give rise to topological insulators,topological superconductors,and Dirac metals.Magnetic materials possess distinctive electron spin-splitting configurations,and varying spin strengths induce disparate impacts on the intermediate equilibrium adsorption capability.Rare earth materials have unique f-electron roaming properties,broad atomic radius,and f-orbital configurations,which typically confer notable advantages in oxygen reduction reactions.Furthermore,the catalytic performance exhibits significant differences under an external alternating electric,thermal,and magnetic field.These new materials show great potential in the re-functionalization of electrocatalytic materials and are expected to lead the development of the next generation of emerging energy materials.
基金supported by the National Natural Science Foundation of China(91964201 and 61825401)China Postdoctoral Science Foundation(2021M700254)。
文摘One-dimensional(1D)gapless hinge states are predicated in the three-dimensional(3D)higher-order topological insulators and topological semimetals,because of the higher-order bulk-boundary correspondence.Nevertheless,the topologically protected property of the hinge states is still not demonstrated so far,because it is not accessible by conventional methods,such as spectroscopy experiments and quantum oscillations.Here,we reveal the topological nature of hinge states in the higher-order topological semimetal Cd;As;nanoplate through spin potentiometric measurements.The results of current induced spin polarization indicate that the spin-momentum locking of the higher-order hinge state is similar to that of the quantum spin Hall state,showing the helical characteristics.The spin-polarized hinge states are robust up to room temperature and can nonlocally diffuse a long distance larger than 5μm,further indicating their immunity protected by topology.Our work deepens the understanding of transport properties of the higher-order topological materials and should be valuable for future electronic and spintronic applications.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1403203,2017YFA0302904,2017YFA0303201,2018YFA0305602,and 2016YFA0300604)the National Natural Science Foundation of China(Grant Nos.12074002,11574372,11674331,11804379,11874417,and 92265104)+4 种基金the National Basic Research Program of China(Grant No.2015CB921303)the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant Nos.XDB07020300,XDB07020100,and XDB33030100)the Recruitment Program for Leading Talent Team of Anhui Province(2019-16)the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)supported by the High Magnetic Field Laboratory of Anhui Province,China。
文摘The origin of superconductivity observed at the point contact between the normal metal tip and the topological material remains uncertain due to the potential presence of superconducting elements or allotropes impurities.It is imperative to seek out a topological material entirely free of superconducting impurities and induce superconductivity between it and normal tips to verify the source of the induced superconductivity.Here,we report the observation of superconductivity up to 9 K induced at point contacts between normal metal tips and the topological material grey arsenic,which is free of superconductivity.The determined temperature dependencies of superconducting gapsΔ(T)deviate from the Bardeen-Cooper-Schriefer(BCS)superconductivity law,exhibiting abnormal behavior.Furthermore,the highly anisotropic upper critical field H_(c2)(T)suggests the anisotropy of the projected interfacial Fermi surface.By tuning the junction resistance,we obtained a negative correlation between the superconducting gapΔand the efective barrier height Z,which validates the interfacial coupling strength as a key factor in the observed tip-induced superconductivity.These experimental results provide guidance for the relevant theory about tip-induced superconductivity on topological materials.
基金co-supported by the National Natural Science Foundation of China (No. 51375383)Graduate Starting Seed Fund of Northwestern Polytechnical University of China (No. Z2014110)
文摘An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error(LSE) between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization(SIMP) model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle(UAV) field.
基金supported by MURI projects from the U.S.Army Research Office(Grant No.W911NF-19-1-0279)the U.S.Air Force Office of Scientific Research(FA9550-21-1-0244).
文摘Weyl semimetals are topological materials whose electron quasiparticles obey the Weyl equation.They possess many unusual properties that may lead to new applications.This is a tutorial review of the optical properties and applications of Weyl semimetals.We review the basic concepts and optical responses of Weyl semimetals,and survey their applications in optics and thermal photonics.We hope this pedagogical text will motivate further research on this emerging topic.