Nonlinear phenomena are commonly shown in the vocalization of animals and exerts different adaptive functions.Although some studies have pointed out that nonlinear phenomena can enhance the individual identification o...Nonlinear phenomena are commonly shown in the vocalization of animals and exerts different adaptive functions.Although some studies have pointed out that nonlinear phenomena can enhance the individual identification of male Odorrana tormota,whether the nonlinear phenomena play a specific role in the sexual selection of O.tormota remain unclear.Here we presented evidence that there was a significant negative correlation(Pearson:n=30,r=0.65,P<0.001)between the nonlinear phenomena content and snout-vent length in the male O.tormota,and two-choice amplexus experiments showed that female O.tormota preferred male with smaller body size containing higher nonlinear phenomena content in its calls.Phonotaxis experiments also revealed that females preferred calls with higher nonlinear phenomena content.Additionally,compared to the calls with lower nonlinear phenomena content and higher fundamental frequency,there was shorter response time in phonotactic behaviour of female induced by the calls with higher nonlinear phenomena content and lower fundamental frequency.We argue that the nonlinear phenomena content in the calls of male O.tormota can convey its body size information and may provide important clues for female frogs in darkened surroundings to identify males’body size during mate choice,meanwhile,higher nonlinear phenomena content in males’calls may increase the attractiveness of males to females.The results of this study provide confirmation that,for O.tormota,nonlinear phenomena have specific function in mate choice.展开更多
We investigated the early embryonic and larval development of the concave-eared torrent frogs, Odorrana tormota (Amphibia, Anura, Ranidae). Embryos were derived from artificial fertilization of frogs’ eggs, and the...We investigated the early embryonic and larval development of the concave-eared torrent frogs, Odorrana tormota (Amphibia, Anura, Ranidae). Embryos were derived from artificial fertilization of frogs’ eggs, and the staging of development was based on morphological and physiological characteristics. Two major periods of development were designated: i) early embryonic period, from fertilization to operculum completion stage, lasted for 324 h at water temperature (WT) 18 ?23℃; ii) larval period, from operculum completion stage to tail absorbed stage, took 1207 h at WT 20 ? 24℃. Tadpoles of the concave-eared torrent frogs showed no evidence of abdominal sucker. Absence of this key characteristic supports the view from molecular systematics that concave-eared torrent frog does not belong to the genus Amolops. Two cleavage patterns were observed in embryos at 8-cell and 16-cell stages, with Pattern I2 (latitudinal cleavage at the 8-cell stage, and meridional cleavage at the 16-cell stage with two perpendicular meridional furrows) being the predominant pattern and only 1.5% belonging to Pattern II (meridional cleavage at the 8-cell stage and latitudinal cleavage at the 16-cell stage). The factors affecting cleavage and hatching ratios, developmental speed, and ecological adaptation were discussed.展开更多
The ultrasonic communication in Concave-eared torrent flogs Odorrana tormota is believed to be an adaptation to avoid masking by the intense low-frequency noise of the rushing stream in their habitat. The acoustic ada...The ultrasonic communication in Concave-eared torrent flogs Odorrana tormota is believed to be an adaptation to avoid masking by the intense low-frequency noise of the rushing stream in their habitat. The acoustic adaptation hypothesis for ultrasonic origin predicts that some organisms subjecting to persistent acoustic interference from broadband, low-frequency en- vironmental noise, might shift their signal frequency upward into frequency bands with lower noise energy. In other words, low-frequency environmental noise might cause upward shifts of species' vocalization frequencies making their signals more conspicuous. Presently, it is unclear whether male O. tormota adjust their signal features in response to a change in the ambient noise level. We tested the prediction of the acoustic adaptation hypothesis by recording the vocalizations of male O. tormota in- habiting two streams with different background noise levels in Huangshan in central China and comparing their call features in- cluding the fundamental frequency (F0). Results showed that the spectrotemporal characteristics of the vocal signals of males in the two habitats were indifferent, except the duration of the call harmonic segments and three parameters related to the call fun- damental frequency (F0). In terms of the F0, the pooled and individual frog data showed that flogs inhabiting the noisier habitat tended to emit calls having higher F0. The higher F0 increases the signal-to-noise ratio, thus benefiting the detection of vocaliza- tion. Thus, similar to several anuran species, concave-eared torrent frogs also display noise-dependent adjustment of vocal pitch in their vocalizations for making them more audible展开更多
基金a grant from the Chinese Natural Science Foundation to Fang ZHANG(NSFC grants 3187223031640073)Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources(No.591601)。
文摘Nonlinear phenomena are commonly shown in the vocalization of animals and exerts different adaptive functions.Although some studies have pointed out that nonlinear phenomena can enhance the individual identification of male Odorrana tormota,whether the nonlinear phenomena play a specific role in the sexual selection of O.tormota remain unclear.Here we presented evidence that there was a significant negative correlation(Pearson:n=30,r=0.65,P<0.001)between the nonlinear phenomena content and snout-vent length in the male O.tormota,and two-choice amplexus experiments showed that female O.tormota preferred male with smaller body size containing higher nonlinear phenomena content in its calls.Phonotaxis experiments also revealed that females preferred calls with higher nonlinear phenomena content.Additionally,compared to the calls with lower nonlinear phenomena content and higher fundamental frequency,there was shorter response time in phonotactic behaviour of female induced by the calls with higher nonlinear phenomena content and lower fundamental frequency.We argue that the nonlinear phenomena content in the calls of male O.tormota can convey its body size information and may provide important clues for female frogs in darkened surroundings to identify males’body size during mate choice,meanwhile,higher nonlinear phenomena content in males’calls may increase the attractiveness of males to females.The results of this study provide confirmation that,for O.tormota,nonlinear phenomena have specific function in mate choice.
基金supported by the National Natural Science Fundation of China(30730029)
文摘We investigated the early embryonic and larval development of the concave-eared torrent frogs, Odorrana tormota (Amphibia, Anura, Ranidae). Embryos were derived from artificial fertilization of frogs’ eggs, and the staging of development was based on morphological and physiological characteristics. Two major periods of development were designated: i) early embryonic period, from fertilization to operculum completion stage, lasted for 324 h at water temperature (WT) 18 ?23℃; ii) larval period, from operculum completion stage to tail absorbed stage, took 1207 h at WT 20 ? 24℃. Tadpoles of the concave-eared torrent frogs showed no evidence of abdominal sucker. Absence of this key characteristic supports the view from molecular systematics that concave-eared torrent frog does not belong to the genus Amolops. Two cleavage patterns were observed in embryos at 8-cell and 16-cell stages, with Pattern I2 (latitudinal cleavage at the 8-cell stage, and meridional cleavage at the 16-cell stage with two perpendicular meridional furrows) being the predominant pattern and only 1.5% belonging to Pattern II (meridional cleavage at the 8-cell stage and latitudinal cleavage at the 16-cell stage). The factors affecting cleavage and hatching ratios, developmental speed, and ecological adaptation were discussed.
文摘The ultrasonic communication in Concave-eared torrent flogs Odorrana tormota is believed to be an adaptation to avoid masking by the intense low-frequency noise of the rushing stream in their habitat. The acoustic adaptation hypothesis for ultrasonic origin predicts that some organisms subjecting to persistent acoustic interference from broadband, low-frequency en- vironmental noise, might shift their signal frequency upward into frequency bands with lower noise energy. In other words, low-frequency environmental noise might cause upward shifts of species' vocalization frequencies making their signals more conspicuous. Presently, it is unclear whether male O. tormota adjust their signal features in response to a change in the ambient noise level. We tested the prediction of the acoustic adaptation hypothesis by recording the vocalizations of male O. tormota in- habiting two streams with different background noise levels in Huangshan in central China and comparing their call features in- cluding the fundamental frequency (F0). Results showed that the spectrotemporal characteristics of the vocal signals of males in the two habitats were indifferent, except the duration of the call harmonic segments and three parameters related to the call fun- damental frequency (F0). In terms of the F0, the pooled and individual frog data showed that flogs inhabiting the noisier habitat tended to emit calls having higher F0. The higher F0 increases the signal-to-noise ratio, thus benefiting the detection of vocaliza- tion. Thus, similar to several anuran species, concave-eared torrent frogs also display noise-dependent adjustment of vocal pitch in their vocalizations for making them more audible