Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal ...Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.展开更多
Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled...Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.展开更多
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a p...In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a promising means of preventing miscommunications and enhancing aviation safety. However, most existing speech recognition methods merely incorporate external language models on the decoder side, leading to insufficient semantic alignment between speech and text modalities during the encoding phase. Furthermore, it is challenging to model acoustic context dependencies over long distances due to the longer speech sequences than text, especially for the extended ATCC data. To address these issues, we propose a speech-text multimodal dual-tower architecture for speech recognition. It employs cross-modal interactions to achieve close semantic alignment during the encoding stage and strengthen its capabilities in modeling auditory long-distance context dependencies. In addition, a two-stage training strategy is elaborately devised to derive semantics-aware acoustic representations effectively. The first stage focuses on pre-training the speech-text multimodal encoding module to enhance inter-modal semantic alignment and aural long-distance context dependencies. The second stage fine-tunes the entire network to bridge the input modality variation gap between the training and inference phases and boost generalization performance. Extensive experiments demonstrate the effectiveness of the proposed speech-text multimodal speech recognition method on the ATCC and AISHELL-1 datasets. It reduces the character error rate to 6.54% and 8.73%, respectively, and exhibits substantial performance gains of 28.76% and 23.82% compared with the best baseline model. The case studies indicate that the obtained semantics-aware acoustic representations aid in accurately recognizing terms with similar pronunciations but distinctive semantics. The research provides a novel modeling paradigm for semantics-aware speech recognition in air traffic control communications, which could contribute to the advancement of intelligent and efficient aviation safety management.展开更多
The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special...The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special way.Firstly,a probability density function is assigned for any given HFE.Thereafter,equal-probability transformation is introduced to transform HFEs with different cardinal numbers on the condition into the same probability density function.The characteristic of this transformation is that the higher the consistency of the membership degrees in HFEs,the higher the credibility of the mentioned membership degrees is,then,the bigger the probability density values for them are.According to this transformation technique,a set of novel distance measures on HFSs is provided.Finally,an illustrative example of intersection traffic control is introduced to show the usefulness of the given distance measures.The example also shows that this study is a good complement to operation theories on HFSs.展开更多
This study aims to address the deviation in downstream tasks caused by inaccurate recognition results when applying Automatic Speech Recognition(ASR)technology in the Air Traffic Control(ATC)field.This paper presents ...This study aims to address the deviation in downstream tasks caused by inaccurate recognition results when applying Automatic Speech Recognition(ASR)technology in the Air Traffic Control(ATC)field.This paper presents a novel cascaded model architecture,namely Conformer-CTC/Attention-T5(CCAT),to build a highly accurate and robust ATC speech recognition model.To tackle the challenges posed by noise and fast speech rate in ATC,the Conformer model is employed to extract robust and discriminative speech representations from raw waveforms.On the decoding side,the Attention mechanism is integrated to facilitate precise alignment between input features and output characters.The Text-To-Text Transfer Transformer(T5)language model is also introduced to handle particular pronunciations and code-mixing issues,providing more accurate and concise textual output for downstream tasks.To enhance the model’s robustness,transfer learning and data augmentation techniques are utilized in the training strategy.The model’s performance is optimized by performing hyperparameter tunings,such as adjusting the number of attention heads,encoder layers,and the weights of the loss function.The experimental results demonstrate the significant contributions of data augmentation,hyperparameter tuning,and error correction models to the overall model performance.On the Our ATC Corpus dataset,the proposed model achieves a Character Error Rate(CER)of 3.44%,representing a 3.64%improvement compared to the baseline model.Moreover,the effectiveness of the proposed model is validated on two publicly available datasets.On the AISHELL-1 dataset,the CCAT model achieves a CER of 3.42%,showcasing a 1.23%improvement over the baseline model.Similarly,on the LibriSpeech dataset,the CCAT model achieves a Word Error Rate(WER)of 5.27%,demonstrating a performance improvement of 7.67%compared to the baseline model.Additionally,this paper proposes an evaluation criterion for assessing the robustness of ATC speech recognition systems.In robustness evaluation experiments based on this criterion,the proposed model demonstrates a performance improvement of 22%compared to the baseline model.展开更多
Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal c...Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal control demonstrates significant improvements over existing conventional signal control systems.Though various CV-based signal control systems have been investigated in the past decades,these approaches still have many issues and drawbacks to overcome.We summarize typical components and structures of these existing CV-based urban traffic signal control systems and digest several important issues from the summarized vital concepts.Last,future research directions are discussed with some suggestions.We hope this survey can facilitate the connected and automated vehicle and transportation research community to efficiently approach next-generation urban traffic signal control methods and systems.展开更多
Aiming at the deficiency of conventional traffic control method, this paper proposes a new method based on multi-agent technology for traffic control. Different from many existing methods, this paper distinguishes tra...Aiming at the deficiency of conventional traffic control method, this paper proposes a new method based on multi-agent technology for traffic control. Different from many existing methods, this paper distinguishes traffic control on the basis of the agent technology from conventional traffic control method. The composition and structure of a multi-agent system (MAS) is first discussed. Then, the step-coordination strategies of intersection-agent, segment-agent, and area-agent are put forward. The advantages of the algorithm are demonstrated by a simulation study.展开更多
In a large-volume,high-density traffic background,air traffic manifests fluid-like microscopical characteristics.The characteristics are formed by the micro tailing actions between individual aircraft.Aircraft headway...In a large-volume,high-density traffic background,air traffic manifests fluid-like microscopical characteristics.The characteristics are formed by the micro tailing actions between individual aircraft.Aircraft headway refers to the time interval between successive flying aircraft in air traffic flow,which is one of the most important characteristics of air traffic flow.The variation in aircraft headway reveals the air traffic control behaviour.In this paper,we study the characteristics of air traffic control behaviours by analyzing radar tracks in a terminal maneuvering area.The headway in arrival traffic flow is measured after the determination of aircraft trailing relationships.The headway evolutionary characteristics for different control decisions and the headway evolutionary characteristics in different phase-states are discussed,and some interesting findings are gotten.This work may be helpful for scholars and managers in understanding the intrinsic nature of air traffic flow and in the development of intelligent assistant decision systems for air traffic management.展开更多
As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model b...As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model between flight support sorties and air traffic controller demand is constructed by using the prediction algorithm of support vector regression(SVR) based on grid search and cross-validation. Then the model predicts the demand for air traffic controllers in seven regions. Additionally,according to the employment data of civil aviation universities,the future training scale of air traffic controller is predicted. The forecast results show that the average relative error of the number of controllers predicted by the algorithm is 1.73%,and the prediction accuracy is higher than traditional regression algorithms. Under the influence of the epidemic,the demand for air traffic controllers will decrease in the short term,but with the control of the epidemic,the demand of air traffic controllers will return to the pre-epidemic level and gradually increase. It is expected that the controller increment will be about 816 by 2028. The forecast results of the demand for air traffic controllers provide a theoretical basis for the introduction and training of medium and long-term air traffic controllers,and also provide method guidance and decision support for the establishment of professional reserve and dynamic control mechanism in the air traffic control system.展开更多
Eye movement is an important indicator of information-seeking behavior and provides insight into cognitive strategies which are vital for decision-making.Various measures based on eye movements have been proposed to c...Eye movement is an important indicator of information-seeking behavior and provides insight into cognitive strategies which are vital for decision-making.Various measures based on eye movements have been proposed to capture humans’ability to process information in a complex environment.The effectiveness of these measures has not yet been fully explored in the field of air traffic management.This paper presents a comparative study on eye-movement measures in air traffic controllers with different levels of working experience.Two commonly investigated oculomotor behaviors,fixation and saccades,together with gaze entropy,are examined.By comparing the statistical properties of the relevant metrics,it is shown that working experience has a notable effect on eye-movement patterns.Both fixation and saccades differ between qualified and novice controllers,with the former type of controller employing more efficient searching strategies.These findings are useful in enhancing the quality of controller training and contributing to an understanding of the information-seeking mechanisms humans use when executing complex tasks.展开更多
A model for evaluating the controller workload was presented based on matter-element analysis, particularly from a mansystem engineering perspective. On the basis of a questionnaire survey, 18 kinds of indexes which i...A model for evaluating the controller workload was presented based on matter-element analysis, particularly from a mansystem engineering perspective. On the basis of a questionnaire survey, 18 kinds of indexes which influence the controller workload were determined. By establishing the classical field and node field of the controller workload, the correlation function of the controller workload grade was obtained; then the correlation degree and estimated grade of controller workload were given. A case study verifies the feasibility of the proposed evaluation method.展开更多
Air traffic controllers are the important parts of air traffic management system who are responsible for the safety and efficiency of the system.They make traffic management decisions based on information acquired fro...Air traffic controllers are the important parts of air traffic management system who are responsible for the safety and efficiency of the system.They make traffic management decisions based on information acquired from various sources.The understanding of their information seeking behaviors is still limited.We aim to identify controllers′ behavior through the examination of the correlations between controllers′eye movements and air traffic.Sixteen air traffic controllers were invited to participate real-time simulation experiments,during which the data of their eye ball movements and air traffic were recorded.Tweny-three air traffic complexity metrics and six eye movements metrics were calculated to examine their relationships.Two correlational methods,Pearson′s correlation and Spearman′s correlation,were tested between every eye-traffic pair of metrics.The results indicate that controllers′two kinds of information-seeking behaviors can be identified from their eye movements:Targets tracking,and confliction recognition.The study on controllers′ eye movements may contribute to the understanding of information-seeking mechanisms leading to the development of more intelligent automations in the future.展开更多
The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this ca...The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this case.A new and efficient algorithm for the optimal solution of ground holding strategy problem(GHSP)is put forward and verified by a numerical example.展开更多
With the rapid development of economy and motorization, the traffic congestion and environmental problems have become more and more serious day by day in Beijing. Therefore, traffic control policies have been graduall...With the rapid development of economy and motorization, the traffic congestion and environmental problems have become more and more serious day by day in Beijing. Therefore, traffic control policies have been gradually adopted by Beijing municipal government since 2008, so as to ease traffic and environmental problems. In this paper, the background and current situation of Beijing to implement traffic control policies are introduced, and also this measure is analyzed and evaluated from traffic effect, environmental effect, motor vehicle development, urban road development, public transport development, and balance between supply and demand, etc. Finally, related conclusions are drawn up as follows: an induced traffic volume will be generated by traffic control policies, and the effect of the traffic control will be erased by the natural growth rate of motor vehicles in three years; public traffic service should be improved for better making traffic control policies; the traffic congestion and environmental problems are alleviated by traffic control policies in the short term, but can't be fundamentally solved in the long run; traffic control policies should cooperate with other traffic demand management policies for reducing demands, and traffic condition should be optimized in both time and space, so that the traffic congestion and environmental problems will be fundamentally solved.展开更多
Air traffic control is an essential obligation in the aviation industry to have safe and efficient air transportation.Year by year,the workload and on-job-stress of the air traffic controllers are rapidly increasing d...Air traffic control is an essential obligation in the aviation industry to have safe and efficient air transportation.Year by year,the workload and on-job-stress of the air traffic controllers are rapidly increasing due to the rapid growth of air traveling.Controllers are usually dealing with multiple aircrafts at a time and must make quick and accurate decisions to ensure the safety of aircrafts.Heavy workload and high responsibilities create air traffic control a stressful job that sometimes could be error-prone and time-consuming,since controlling and decision-making are solely dependent on human intelligence.To provide effective solutions for the mentioned on the job challenges of the controllers,this study proposed an intelligent virtual assistant system(IVAS)to assist the controllers thereby to reduce the controllers’workload.Consisting of four main parts,which are voice recognition,display conversation on screen,task execution,and text to speech,the proposed system is developed with the aid of artificial intelligence(AI)techniques to make speedy decisions and be free of human interventions.IVAS is a computer-based system that can be activated by the voice of the air traffic controller and then appropriately assist to control the flight.IVAS identifies the words spoken by the controller and then a virtual assistant navigates to collect the data requested from the controllers,which allows additional or free time to the controllers to contemplate more on the work or could assist to another aircraft.The Google speech application programming interface(API)converts audio to text to recognize keywords.AI agent is trained using the Hidden marko model(HMM)algorithm such that it could learn the characteristics of the distinct voices of the controllers.At this stage,the proposed IVAS can be used to provide training for novice air traffic controllers effectively.The system is to be developed as a real-time system which could be used at the air traffic controlling base for actual traffic controlling purposes and the system is to be further upgraded to perform the task by recognizing keywords directly from the pilot voice command.展开更多
Mashhad, the second largest city in Iran, like many other big cities, is faced with increasing traffic congestion owing to rapidly increasing population and annual pilgrimage. In recent years, Mashhad traffic and tran...Mashhad, the second largest city in Iran, like many other big cities, is faced with increasing traffic congestion owing to rapidly increasing population and annual pilgrimage. In recent years, Mashhad traffic and transportation authorities have been challenged with how to manage the increasing congestion with limited budgets for major roadway construction projects. Mashhad has recognized the need to improve the existing system capacity to get the most out of their cur- rent transportation system infrastructures. Since most of the delay times occur at signalized intersections, using an intelligent control system with proper capabilities to overcome the growing traffic requirements is recommended. Following comprehensive studies carried out with the aim of developing the Mashhad traffic control center, the SCATS adaptive traffic control system was introduced as the selected intelligent control system for integrating signalized intersections. The first intersection was equipped with this system in 2005. This paper describes the results of a field evaluation in which fixed actuated-coordinated signal timings are compared with those dynamically computed by SCATS. The ef- fects of this system on optimizing fuel consumption as well as reducing air pollutants are fully discussed. It is found that SCATS consistently reduced travel times and the average delay per stopped or approaching vehicle. The positive impact of adaptive traffic control systems on fuel consumption and air pollution are also highlighted.展开更多
The presence of highway construction zones hinders mobility and affects traffic operations. A 2002 study by Wunderlich & Hardesty reported that nearly 20% of the National Highway System roads have scheduled constr...The presence of highway construction zones hinders mobility and affects traffic operations. A 2002 study by Wunderlich & Hardesty reported that nearly 20% of the National Highway System roads have scheduled construction work during the peak construction season. Additionally, approximately 24% of non-recurring delays on freeways are caused by work zones. To minimize time lost by travelers due to work zone induced traffic congestion, it is important to efficiently plan temporary traffic control (TTC) at work zones. Earlier research conducted by Sisiopiku & Ramadan, 2017 confirms that the majority of State Departments of Transportation currently rely on their earlier experience when planning for work zones, rather than consider operational and safety impacts. Using a study corridor in Birmingham, Alabama as a test bed, this study investigated the operational impacts of TTC options for work zones with 3-to-1 lane drop configuration using traffic data collected from the Alabama Department of Transportation. The VISSIM simulation platform was used to conduct the experiments. The experimental design considered two TTC strategies (i.e., static late and early merge) under 3-to-1 lane drop configuration for work-space length of 500 ft for long- and short-term lane closures. The study concluded that the 3-to-1 lane-drop configuration should not be scheduled for long-term duration. Maintenance work can be scheduled from midnight to early morning and under the 3-to-1 lane closure scenario the performance of early and late merge traffic control is similar. Overall, this study used simulation modeling to compare the effectiveness of two traffic control strategies at work zones on the basis of different performance measures. The results provide information about the impact of each control strategy on density, speed, travel time etc. They also help determine what time of the day is best for lane closings in order to reduce adverse impacts from capacity reduction. Thus, the findings are expected to provide valuable guidance for agencies responsible for planning, design, and operations of work zones in the future.展开更多
Complex weather conditions is meaning thunderstorm freezing turbulence wind-shear low visibility weather affect the flight safety.When confronted with complex weather conditions,the controllers should know the weather...Complex weather conditions is meaning thunderstorm freezing turbulence wind-shear low visibility weather affect the flight safety.When confronted with complex weather conditions,the controllers should know the weather condition and trend weather,and notify the aircraft under your control zone.The controllers provide the required services to the pilots,help the pilots to avoid the complex weather.In this paper,through different complex weathers under different control command,get the different methods of control.展开更多
This paper proposes the use of admission and traffic control schemes for real-time applications. The admission control scheme determines the admission of high-priority real-time applications such as voice and video st...This paper proposes the use of admission and traffic control schemes for real-time applications. The admission control scheme determines the admission of high-priority real-time applications such as voice and video streams in terms of their bandwidth utilization time (medium time), whereas the traffic control scheme maintains the communication quality of applications permitted admission by restricting other traffic. Owing to the use of contention-based access, a conventional scheme without admission control will degrade the communication quality when the number of terminals using high-priority applications increases. Moreover, only the capabilities (i.e., frame and sequence procedures) of admission control are defined in the IEEE 802.11e standard;the detailed usage in terms of the application characteristics is not specified, and it may be difficult to achieve a sufficient level of quality of service (QoS). The proposed schemes achieve the optimum QoS for actual services. The software used in the proposed schemes was implemented into hardware at the access point, and was evaluated experimentally. Based on the evaluation results, excellent performances with high QoS applications were obtained.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB2900200)the Key Research and Development Program of Science and Technology Department of Zhejiang Province(2022C01121)Zhejiang Provincial Department of Transport Research Project(ZJXL-JTT-202223).
文摘Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.
文摘Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.
基金This research was funded by Shenzhen Science and Technology Program(Grant No.RCBS20221008093121051)the General Higher Education Project of Guangdong Provincial Education Department(Grant No.2020ZDZX3085)+1 种基金China Postdoctoral Science Foundation(Grant No.2021M703371)the Post-Doctoral Foundation Project of Shenzhen Polytechnic(Grant No.6021330002K).
文摘In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a promising means of preventing miscommunications and enhancing aviation safety. However, most existing speech recognition methods merely incorporate external language models on the decoder side, leading to insufficient semantic alignment between speech and text modalities during the encoding phase. Furthermore, it is challenging to model acoustic context dependencies over long distances due to the longer speech sequences than text, especially for the extended ATCC data. To address these issues, we propose a speech-text multimodal dual-tower architecture for speech recognition. It employs cross-modal interactions to achieve close semantic alignment during the encoding stage and strengthen its capabilities in modeling auditory long-distance context dependencies. In addition, a two-stage training strategy is elaborately devised to derive semantics-aware acoustic representations effectively. The first stage focuses on pre-training the speech-text multimodal encoding module to enhance inter-modal semantic alignment and aural long-distance context dependencies. The second stage fine-tunes the entire network to bridge the input modality variation gap between the training and inference phases and boost generalization performance. Extensive experiments demonstrate the effectiveness of the proposed speech-text multimodal speech recognition method on the ATCC and AISHELL-1 datasets. It reduces the character error rate to 6.54% and 8.73%, respectively, and exhibits substantial performance gains of 28.76% and 23.82% compared with the best baseline model. The case studies indicate that the obtained semantics-aware acoustic representations aid in accurately recognizing terms with similar pronunciations but distinctive semantics. The research provides a novel modeling paradigm for semantics-aware speech recognition in air traffic control communications, which could contribute to the advancement of intelligent and efficient aviation safety management.
基金supported by Shanghai Pujiang Program (No.2019PJC062)the Natural Science Foundation of Shandong Province (No.ZR2021MG003)the Research Project on Undergraduate Teaching Reform of Higher Education in Shandong Province (No.Z2021046).
文摘The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special way.Firstly,a probability density function is assigned for any given HFE.Thereafter,equal-probability transformation is introduced to transform HFEs with different cardinal numbers on the condition into the same probability density function.The characteristic of this transformation is that the higher the consistency of the membership degrees in HFEs,the higher the credibility of the mentioned membership degrees is,then,the bigger the probability density values for them are.According to this transformation technique,a set of novel distance measures on HFSs is provided.Finally,an illustrative example of intersection traffic control is introduced to show the usefulness of the given distance measures.The example also shows that this study is a good complement to operation theories on HFSs.
基金This study was co-supported by the National Key R&D Program of China(No.2021YFF0603904)National Natural Science Foundation of China(U1733203)Safety Capacity Building Project of Civil Aviation Administration of China(TM2019-16-1/3).
文摘This study aims to address the deviation in downstream tasks caused by inaccurate recognition results when applying Automatic Speech Recognition(ASR)technology in the Air Traffic Control(ATC)field.This paper presents a novel cascaded model architecture,namely Conformer-CTC/Attention-T5(CCAT),to build a highly accurate and robust ATC speech recognition model.To tackle the challenges posed by noise and fast speech rate in ATC,the Conformer model is employed to extract robust and discriminative speech representations from raw waveforms.On the decoding side,the Attention mechanism is integrated to facilitate precise alignment between input features and output characters.The Text-To-Text Transfer Transformer(T5)language model is also introduced to handle particular pronunciations and code-mixing issues,providing more accurate and concise textual output for downstream tasks.To enhance the model’s robustness,transfer learning and data augmentation techniques are utilized in the training strategy.The model’s performance is optimized by performing hyperparameter tunings,such as adjusting the number of attention heads,encoder layers,and the weights of the loss function.The experimental results demonstrate the significant contributions of data augmentation,hyperparameter tuning,and error correction models to the overall model performance.On the Our ATC Corpus dataset,the proposed model achieves a Character Error Rate(CER)of 3.44%,representing a 3.64%improvement compared to the baseline model.Moreover,the effectiveness of the proposed model is validated on two publicly available datasets.On the AISHELL-1 dataset,the CCAT model achieves a CER of 3.42%,showcasing a 1.23%improvement over the baseline model.Similarly,on the LibriSpeech dataset,the CCAT model achieves a Word Error Rate(WER)of 5.27%,demonstrating a performance improvement of 7.67%compared to the baseline model.Additionally,this paper proposes an evaluation criterion for assessing the robustness of ATC speech recognition systems.In robustness evaluation experiments based on this criterion,the proposed model demonstrates a performance improvement of 22%compared to the baseline model.
基金supported by National Key R&D Program of China(Grant No.2018YFE0204302)National Natural Science Foundation of China(Grant No.52062015,No.61703160)+1 种基金the Talent Research Start-up Fund of Nanjing University of Aeronautics and Astronautics(YAH22019)Jiangsu High Level'Shuang-Chuang'Project.
文摘Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal control demonstrates significant improvements over existing conventional signal control systems.Though various CV-based signal control systems have been investigated in the past decades,these approaches still have many issues and drawbacks to overcome.We summarize typical components and structures of these existing CV-based urban traffic signal control systems and digest several important issues from the summarized vital concepts.Last,future research directions are discussed with some suggestions.We hope this survey can facilitate the connected and automated vehicle and transportation research community to efficiently approach next-generation urban traffic signal control methods and systems.
文摘Aiming at the deficiency of conventional traffic control method, this paper proposes a new method based on multi-agent technology for traffic control. Different from many existing methods, this paper distinguishes traffic control on the basis of the agent technology from conventional traffic control method. The composition and structure of a multi-agent system (MAS) is first discussed. Then, the step-coordination strategies of intersection-agent, segment-agent, and area-agent are put forward. The advantages of the algorithm are demonstrated by a simulation study.
基金supported by the National Nature Science Foundation of China(No.71801215)the Fundamental Research Fund for the Central Universities (No. 3122016C009).
文摘In a large-volume,high-density traffic background,air traffic manifests fluid-like microscopical characteristics.The characteristics are formed by the micro tailing actions between individual aircraft.Aircraft headway refers to the time interval between successive flying aircraft in air traffic flow,which is one of the most important characteristics of air traffic flow.The variation in aircraft headway reveals the air traffic control behaviour.In this paper,we study the characteristics of air traffic control behaviours by analyzing radar tracks in a terminal maneuvering area.The headway in arrival traffic flow is measured after the determination of aircraft trailing relationships.The headway evolutionary characteristics for different control decisions and the headway evolutionary characteristics in different phase-states are discussed,and some interesting findings are gotten.This work may be helpful for scholars and managers in understanding the intrinsic nature of air traffic flow and in the development of intelligent assistant decision systems for air traffic management.
基金supported by the National Natural Science Foundation of China(No.71971114)。
文摘As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model between flight support sorties and air traffic controller demand is constructed by using the prediction algorithm of support vector regression(SVR) based on grid search and cross-validation. Then the model predicts the demand for air traffic controllers in seven regions. Additionally,according to the employment data of civil aviation universities,the future training scale of air traffic controller is predicted. The forecast results show that the average relative error of the number of controllers predicted by the algorithm is 1.73%,and the prediction accuracy is higher than traditional regression algorithms. Under the influence of the epidemic,the demand for air traffic controllers will decrease in the short term,but with the control of the epidemic,the demand of air traffic controllers will return to the pre-epidemic level and gradually increase. It is expected that the controller increment will be about 816 by 2028. The forecast results of the demand for air traffic controllers provide a theoretical basis for the introduction and training of medium and long-term air traffic controllers,and also provide method guidance and decision support for the establishment of professional reserve and dynamic control mechanism in the air traffic control system.
基金This research was supported by the National Natural Science Foundation of China(U1833126,U2033203,61773203,and 61304190).
文摘Eye movement is an important indicator of information-seeking behavior and provides insight into cognitive strategies which are vital for decision-making.Various measures based on eye movements have been proposed to capture humans’ability to process information in a complex environment.The effectiveness of these measures has not yet been fully explored in the field of air traffic management.This paper presents a comparative study on eye-movement measures in air traffic controllers with different levels of working experience.Two commonly investigated oculomotor behaviors,fixation and saccades,together with gaze entropy,are examined.By comparing the statistical properties of the relevant metrics,it is shown that working experience has a notable effect on eye-movement patterns.Both fixation and saccades differ between qualified and novice controllers,with the former type of controller employing more efficient searching strategies.These findings are useful in enhancing the quality of controller training and contributing to an understanding of the information-seeking mechanisms humans use when executing complex tasks.
基金The National Natural Science Foundation of China (60742117)
文摘A model for evaluating the controller workload was presented based on matter-element analysis, particularly from a mansystem engineering perspective. On the basis of a questionnaire survey, 18 kinds of indexes which influence the controller workload were determined. By establishing the classical field and node field of the controller workload, the correlation function of the controller workload grade was obtained; then the correlation degree and estimated grade of controller workload were given. A case study verifies the feasibility of the proposed evaluation method.
基金supported by the National Natural Science Foundation of China (No.61304190)the Fundamental Research Funds for the Central Universities (No.NJ20150030)the Natural Science Foundation of Jiangsu Province of China (No.BK20130818)
文摘Air traffic controllers are the important parts of air traffic management system who are responsible for the safety and efficiency of the system.They make traffic management decisions based on information acquired from various sources.The understanding of their information seeking behaviors is still limited.We aim to identify controllers′ behavior through the examination of the correlations between controllers′eye movements and air traffic.Sixteen air traffic controllers were invited to participate real-time simulation experiments,during which the data of their eye ball movements and air traffic were recorded.Tweny-three air traffic complexity metrics and six eye movements metrics were calculated to examine their relationships.Two correlational methods,Pearson′s correlation and Spearman′s correlation,were tested between every eye-traffic pair of metrics.The results indicate that controllers′two kinds of information-seeking behaviors can be identified from their eye movements:Targets tracking,and confliction recognition.The study on controllers′ eye movements may contribute to the understanding of information-seeking mechanisms leading to the development of more intelligent automations in the future.
文摘The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this case.A new and efficient algorithm for the optimal solution of ground holding strategy problem(GHSP)is put forward and verified by a numerical example.
基金National Natural Science Foundation of China (Youth Foundation): Study on the Operating Efficiency and Energy Consumption Optimization Methods of the Regional Passenger Transport System (71201006) (Xuesong FENG)
文摘With the rapid development of economy and motorization, the traffic congestion and environmental problems have become more and more serious day by day in Beijing. Therefore, traffic control policies have been gradually adopted by Beijing municipal government since 2008, so as to ease traffic and environmental problems. In this paper, the background and current situation of Beijing to implement traffic control policies are introduced, and also this measure is analyzed and evaluated from traffic effect, environmental effect, motor vehicle development, urban road development, public transport development, and balance between supply and demand, etc. Finally, related conclusions are drawn up as follows: an induced traffic volume will be generated by traffic control policies, and the effect of the traffic control will be erased by the natural growth rate of motor vehicles in three years; public traffic service should be improved for better making traffic control policies; the traffic congestion and environmental problems are alleviated by traffic control policies in the short term, but can't be fundamentally solved in the long run; traffic control policies should cooperate with other traffic demand management policies for reducing demands, and traffic condition should be optimized in both time and space, so that the traffic congestion and environmental problems will be fundamentally solved.
文摘Air traffic control is an essential obligation in the aviation industry to have safe and efficient air transportation.Year by year,the workload and on-job-stress of the air traffic controllers are rapidly increasing due to the rapid growth of air traveling.Controllers are usually dealing with multiple aircrafts at a time and must make quick and accurate decisions to ensure the safety of aircrafts.Heavy workload and high responsibilities create air traffic control a stressful job that sometimes could be error-prone and time-consuming,since controlling and decision-making are solely dependent on human intelligence.To provide effective solutions for the mentioned on the job challenges of the controllers,this study proposed an intelligent virtual assistant system(IVAS)to assist the controllers thereby to reduce the controllers’workload.Consisting of four main parts,which are voice recognition,display conversation on screen,task execution,and text to speech,the proposed system is developed with the aid of artificial intelligence(AI)techniques to make speedy decisions and be free of human interventions.IVAS is a computer-based system that can be activated by the voice of the air traffic controller and then appropriately assist to control the flight.IVAS identifies the words spoken by the controller and then a virtual assistant navigates to collect the data requested from the controllers,which allows additional or free time to the controllers to contemplate more on the work or could assist to another aircraft.The Google speech application programming interface(API)converts audio to text to recognize keywords.AI agent is trained using the Hidden marko model(HMM)algorithm such that it could learn the characteristics of the distinct voices of the controllers.At this stage,the proposed IVAS can be used to provide training for novice air traffic controllers effectively.The system is to be developed as a real-time system which could be used at the air traffic controlling base for actual traffic controlling purposes and the system is to be further upgraded to perform the task by recognizing keywords directly from the pilot voice command.
文摘Mashhad, the second largest city in Iran, like many other big cities, is faced with increasing traffic congestion owing to rapidly increasing population and annual pilgrimage. In recent years, Mashhad traffic and transportation authorities have been challenged with how to manage the increasing congestion with limited budgets for major roadway construction projects. Mashhad has recognized the need to improve the existing system capacity to get the most out of their cur- rent transportation system infrastructures. Since most of the delay times occur at signalized intersections, using an intelligent control system with proper capabilities to overcome the growing traffic requirements is recommended. Following comprehensive studies carried out with the aim of developing the Mashhad traffic control center, the SCATS adaptive traffic control system was introduced as the selected intelligent control system for integrating signalized intersections. The first intersection was equipped with this system in 2005. This paper describes the results of a field evaluation in which fixed actuated-coordinated signal timings are compared with those dynamically computed by SCATS. The ef- fects of this system on optimizing fuel consumption as well as reducing air pollutants are fully discussed. It is found that SCATS consistently reduced travel times and the average delay per stopped or approaching vehicle. The positive impact of adaptive traffic control systems on fuel consumption and air pollution are also highlighted.
文摘The presence of highway construction zones hinders mobility and affects traffic operations. A 2002 study by Wunderlich & Hardesty reported that nearly 20% of the National Highway System roads have scheduled construction work during the peak construction season. Additionally, approximately 24% of non-recurring delays on freeways are caused by work zones. To minimize time lost by travelers due to work zone induced traffic congestion, it is important to efficiently plan temporary traffic control (TTC) at work zones. Earlier research conducted by Sisiopiku & Ramadan, 2017 confirms that the majority of State Departments of Transportation currently rely on their earlier experience when planning for work zones, rather than consider operational and safety impacts. Using a study corridor in Birmingham, Alabama as a test bed, this study investigated the operational impacts of TTC options for work zones with 3-to-1 lane drop configuration using traffic data collected from the Alabama Department of Transportation. The VISSIM simulation platform was used to conduct the experiments. The experimental design considered two TTC strategies (i.e., static late and early merge) under 3-to-1 lane drop configuration for work-space length of 500 ft for long- and short-term lane closures. The study concluded that the 3-to-1 lane-drop configuration should not be scheduled for long-term duration. Maintenance work can be scheduled from midnight to early morning and under the 3-to-1 lane closure scenario the performance of early and late merge traffic control is similar. Overall, this study used simulation modeling to compare the effectiveness of two traffic control strategies at work zones on the basis of different performance measures. The results provide information about the impact of each control strategy on density, speed, travel time etc. They also help determine what time of the day is best for lane closings in order to reduce adverse impacts from capacity reduction. Thus, the findings are expected to provide valuable guidance for agencies responsible for planning, design, and operations of work zones in the future.
文摘Complex weather conditions is meaning thunderstorm freezing turbulence wind-shear low visibility weather affect the flight safety.When confronted with complex weather conditions,the controllers should know the weather condition and trend weather,and notify the aircraft under your control zone.The controllers provide the required services to the pilots,help the pilots to avoid the complex weather.In this paper,through different complex weathers under different control command,get the different methods of control.
文摘This paper proposes the use of admission and traffic control schemes for real-time applications. The admission control scheme determines the admission of high-priority real-time applications such as voice and video streams in terms of their bandwidth utilization time (medium time), whereas the traffic control scheme maintains the communication quality of applications permitted admission by restricting other traffic. Owing to the use of contention-based access, a conventional scheme without admission control will degrade the communication quality when the number of terminals using high-priority applications increases. Moreover, only the capabilities (i.e., frame and sequence procedures) of admission control are defined in the IEEE 802.11e standard;the detailed usage in terms of the application characteristics is not specified, and it may be difficult to achieve a sufficient level of quality of service (QoS). The proposed schemes achieve the optimum QoS for actual services. The software used in the proposed schemes was implemented into hardware at the access point, and was evaluated experimentally. Based on the evaluation results, excellent performances with high QoS applications were obtained.