To reduce the error in transfer alignment caused by reference information delay,a time delay estimation method is developed based on least-squares curve fitting of the angular rate integration.First,the gyro sensor me...To reduce the error in transfer alignment caused by reference information delay,a time delay estimation method is developed based on least-squares curve fitting of the angular rate integration.First,the gyro sensor measurements of the main strapdown inertial navigation system(M-SINS) and the slave strapdown inertial navigation system(S-SINS) are recorded for a few seconds and the integration of the data is calculated.Then,the possible maximum range of the delay value is defined and the points of the curve at different intervals are moved.The square of the differences between the corresponding points are calculated.Finally,the delay estimation can be acquired by the least-squares curve fitting of the M-SINS and the S-SINS.A delay compensation method by local data shifting is also presented.The simulation results demonstrate the effectiveness of delay estimation and indicate that the estimation accuracy is independent of the delay value.And the local data shifting compensation method can effectively reduce the errors of the transfer alignment caused by the reference information delay.展开更多
In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In th...In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In the method,the aircraft carrier does not need any form of movement.Meantime,interfering motions such as rolling,pitching,and yawing motions caused by sea waves are effectively used.Firstly,the deck flexure deformation model is made.Secondly,the state space model of transfer alignment is presented.Finally,the feasibility of this method is validated by the simulation.Simulation results show that the misalignment angle error can be estimated and reach an anticipated precision-0.2 mrad in 5 s,while the deck deformation angle error can be estimated and reach a better precision- 0.1 mrad in 20 s.展开更多
The transfer alignment problem of the shipborne weapon inertial navigation system (INS) is addressed. Specifically, two transfer alignment algorithms subjected to the ship motions induced by the waves are discussed....The transfer alignment problem of the shipborne weapon inertial navigation system (INS) is addressed. Specifically, two transfer alignment algorithms subjected to the ship motions induced by the waves are discussed. To consider the limited maneuver level performed by the ship, a new filter algorithm for transfer alignment methods using velocity and angular rate matching is first derived. And then an improved method using integrated velocity and integrated angular rate matching is introduced to reduce the effect of the ship body flexure. The simulation results show the feasibility and validity of the proposed transfer alignment algorithms.展开更多
In this study, we propose the use of the Degree of Alignment(DOA) in engineering applications for evaluating the precision of and identifying the transfer alignment on a moving base. First, we derive the statistical f...In this study, we propose the use of the Degree of Alignment(DOA) in engineering applications for evaluating the precision of and identifying the transfer alignment on a moving base. First, we derive the statistical formula on the basis of estimations. Next, we design a scheme for evaluating the transfer alignment on a moving base, for which the attitude error cannot be directly measured. Then, we build a mathematic estimation model and discuss Fixed Point Smoothing(FPS), Returns to Scale(RTS), Inverted Sequence Recursive Estimation(ISRE), and Kalman filter estimation methods, which can be used when evaluating alignment accuracy. Our theoretical calculations and simulated analyses show that the DOA reflects not only the alignment time and accuracy but also differences in the maneuver schemes, and is suitable for use as an integrated evaluation index. Furthermore, all four of these algorithms can be used to identify the transfer alignment and evaluate its accuracy. We recommend RTS in particular for engineering applications. Generalized DOAs should be calculated according to the tactical requirements.展开更多
Transfer alignment is used to initialize SINS(Strapdown Inertial Navigation System)in motion.Lever-arm effect compensation is studied existing in an AUV(Autonomous Underwater Vehicle)before launched from the mother sh...Transfer alignment is used to initialize SINS(Strapdown Inertial Navigation System)in motion.Lever-arm effect compensation is studied existing in an AUV(Autonomous Underwater Vehicle)before launched from the mother ship.The AUV is equipped with SINS,Doppler Velocity Log,depth sensor and other navigation sensors.The lever arm will cause large error on the transfer alignment between master inertial navigation system and slave inertial navigation system,especially in big ship situations.This paper presents a novel method that can effectively estimate and compensate the flexural lever arm between the main inertial navigation system mounted on the mother ship and the slave inertial navigation system equipped on the AUV.The nonlinear measurement equation of angular rate is derived based on three successive rotations of the body frame of the master inertial navigation system.Nonlinear filter is utilized as the nonlinear estimator for its capability of non-linear approximation.Observability analysis was conducted on the SINS state vector based on singular value decomposition method.State equation of SINS was adopted as the system state equation.Simulation experiments were conducted and results showed that the proposed method can estimate the flexural lever arm more accurately,the precision of transfer alignment was improved and alignment time was shortened accordingly.展开更多
The performance of the transfer alignment has great impact on inertial navigation systems.As the transfer alignment is generally implemented using a filter to compensate the errors,its accuracy,rapidity and anti-distu...The performance of the transfer alignment has great impact on inertial navigation systems.As the transfer alignment is generally implemented using a filter to compensate the errors,its accuracy,rapidity and anti-disturbance capability are key properties to evaluate the filtering process.In terms of the superiority in dealing with the noise,H∞filtering has been used to improve the anti-disturbance capability of the transfer alignment.However,there is still a need to incorporate system uncertainty due to various dynamic conditions.Based on the structural value theory,a robustness stability analysis method has been proposed for the transfer alignment to evaluate the impact of uncertainty on the navigation system.The mathematical derivation has been elaborated in this paper,and the simulation has been carried out to verify the effectiveness of the algorithm.展开更多
The alignment accuracy of the strap-down inertial navigation system (SINS) of airborne weapon is greatly degraded by the dynamic wing flexure of the aircraft. An adaptive Kalman filter uses innovation sequences base...The alignment accuracy of the strap-down inertial navigation system (SINS) of airborne weapon is greatly degraded by the dynamic wing flexure of the aircraft. An adaptive Kalman filter uses innovation sequences based on the maximum likelihood estimated criterion to adapt the system noise covariance matrix and the measurement noise covariance matrix on line, which is used to estimate the misalignment if the model of wing flexure of the aircraft is unknown. From a number of simulations, it is shown that the accuracy of the adaptive Kalman filter is better than the conventional Kalman filter, and the erroneous misalignment models of the wing flexure of aircraft will cause bad estimation results of Kalman filter using attitude match method.展开更多
The transfer alignment of SINS/GPS navigation system of a high-speed marine missile was investigated. With the help of the big acceleration of a high-speed missile, the transfer alignment was changed into a three-time...The transfer alignment of SINS/GPS navigation system of a high-speed marine missile was investigated. With the help of the big acceleration of a high-speed missile, the transfer alignment was changed into a three-time alignment. The azimuth alignment was coarsely finished in 10s in the first time alignment, the horizontal alignment was accurately and rapidly finished in the second time alignment, and the azimuth alignment was accurately finished in the third time alignment. Because the second time alignment and the third time alignment were finished by GPS after the missile was launched, the horizontal alignment and the second azimuth alignment got rid of the influence of the warship body flexibility deforming. The precision and rapidity of the horizontal alignment were prominently increased due to the vertical launch of the marine missile with the big acceleration. Simulation verifies the effectiveness of the proposed alignment method.展开更多
In order to meet the demand of high-precision heading angle transmission in the transfer alignment of inertial navigation system on moving base,the analytical function relationship between the hull deforma-tion and th...In order to meet the demand of high-precision heading angle transmission in the transfer alignment of inertial navigation system on moving base,the analytical function relationship between the hull deforma-tion and the turning angular velocity and angular acceleration was derived by using the classical beam theory based on the analysis of the equivalent load exerted by the hydrodynamic force and inertia force on the hull structure during the turning process under the combined action of the steering rudder mo-ment and wave force.The objective law between the angular motion and the azimuth deformation angle of the hull under the combined action of maneuvering and sea waves was revealed.Finally,the correc-tion coefficients were determined according to the left turn and right turn motions of the hull by using the measured data of the ship in the sea trial during the S-shape maneuvering navigation,and the az-imuth deformation angle correction was completed.The results indicated that the application of the Qu’s bending deformation correction formula could greatly reduce the influence of the hull flexural deforma-tion on the heading angle accuracy,meet the needs of high-precision heading angle transmission,and fully verify the correctness of the hull azimuth deformation law and the heading angle transmission er-ror correction theory.This theory and method provided technical support for establishing high-precision distributed digital reference in the field of transfer alignment of inertial navigation on moving base and the application of heading angle transfer of other shipborne equipment.展开更多
基金The National Basic Research Program of China(973 Program) (No. 613121030201)the Fundamental Research of Commission of Science,Technology and Industry for National Defense (No. C1420080224)
文摘To reduce the error in transfer alignment caused by reference information delay,a time delay estimation method is developed based on least-squares curve fitting of the angular rate integration.First,the gyro sensor measurements of the main strapdown inertial navigation system(M-SINS) and the slave strapdown inertial navigation system(S-SINS) are recorded for a few seconds and the integration of the data is calculated.Then,the possible maximum range of the delay value is defined and the points of the curve at different intervals are moved.The square of the differences between the corresponding points are calculated.Finally,the delay estimation can be acquired by the least-squares curve fitting of the M-SINS and the S-SINS.A delay compensation method by local data shifting is also presented.The simulation results demonstrate the effectiveness of delay estimation and indicate that the estimation accuracy is independent of the delay value.And the local data shifting compensation method can effectively reduce the errors of the transfer alignment caused by the reference information delay.
基金supported by the Photoelectric Control Technology Project of National Defense Science and Technology Key Laboratory of China(20120224006)
文摘In order to improve the survival ability and rapid response ability of the carrier craft,a new rapid transfer alignment method of the strapdown inertial navigation system(SINS) on a rocking base is put forward.In the method,the aircraft carrier does not need any form of movement.Meantime,interfering motions such as rolling,pitching,and yawing motions caused by sea waves are effectively used.Firstly,the deck flexure deformation model is made.Secondly,the state space model of transfer alignment is presented.Finally,the feasibility of this method is validated by the simulation.Simulation results show that the misalignment angle error can be estimated and reach an anticipated precision-0.2 mrad in 5 s,while the deck deformation angle error can be estimated and reach a better precision- 0.1 mrad in 20 s.
基金supported by the Weapon Equipment Research Foundation in Advance(514090909HT0141).
文摘The transfer alignment problem of the shipborne weapon inertial navigation system (INS) is addressed. Specifically, two transfer alignment algorithms subjected to the ship motions induced by the waves are discussed. To consider the limited maneuver level performed by the ship, a new filter algorithm for transfer alignment methods using velocity and angular rate matching is first derived. And then an improved method using integrated velocity and integrated angular rate matching is introduced to reduce the effect of the ship body flexure. The simulation results show the feasibility and validity of the proposed transfer alignment algorithms.
基金Supported by the National Natural Science Foundation of China (61633008), the National Natural Science Foundation of China (61203225), the Natural Science Foundation of Heilongjiang Province of China(QC2014C069), the Special fund for the Central Universities (HEUCF160401), and Provincial Postdoctoral Scientific Research Foundation (LBH-Q 15032).
文摘In this study, we propose the use of the Degree of Alignment(DOA) in engineering applications for evaluating the precision of and identifying the transfer alignment on a moving base. First, we derive the statistical formula on the basis of estimations. Next, we design a scheme for evaluating the transfer alignment on a moving base, for which the attitude error cannot be directly measured. Then, we build a mathematic estimation model and discuss Fixed Point Smoothing(FPS), Returns to Scale(RTS), Inverted Sequence Recursive Estimation(ISRE), and Kalman filter estimation methods, which can be used when evaluating alignment accuracy. Our theoretical calculations and simulated analyses show that the DOA reflects not only the alignment time and accuracy but also differences in the maneuver schemes, and is suitable for use as an integrated evaluation index. Furthermore, all four of these algorithms can be used to identify the transfer alignment and evaluate its accuracy. We recommend RTS in particular for engineering applications. Generalized DOAs should be calculated according to the tactical requirements.
基金This work is funded by Natural Science Foundation of Jiangsu Province under Grant BK20160955a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Science Research Foundation of Nanjing University of Information Science and Technology under Grant 20110430+1 种基金Open Foundation of Jiangsu Key Laboratory of Meteorological Observation and Information Processing(KDXS1304)Open Foundation of Jiangsu Key Laboratory of Ocean Dynamic Remote Sensing and Acoustics(KHYS1405).
文摘Transfer alignment is used to initialize SINS(Strapdown Inertial Navigation System)in motion.Lever-arm effect compensation is studied existing in an AUV(Autonomous Underwater Vehicle)before launched from the mother ship.The AUV is equipped with SINS,Doppler Velocity Log,depth sensor and other navigation sensors.The lever arm will cause large error on the transfer alignment between master inertial navigation system and slave inertial navigation system,especially in big ship situations.This paper presents a novel method that can effectively estimate and compensate the flexural lever arm between the main inertial navigation system mounted on the mother ship and the slave inertial navigation system equipped on the AUV.The nonlinear measurement equation of angular rate is derived based on three successive rotations of the body frame of the master inertial navigation system.Nonlinear filter is utilized as the nonlinear estimator for its capability of non-linear approximation.Observability analysis was conducted on the SINS state vector based on singular value decomposition method.State equation of SINS was adopted as the system state equation.Simulation experiments were conducted and results showed that the proposed method can estimate the flexural lever arm more accurately,the precision of transfer alignment was improved and alignment time was shortened accordingly.
基金This work is supported by National Natural Science Foundation of China,No.61803203and the Fundamental Research Funds for the Central Universities,No.30918011305.
文摘The performance of the transfer alignment has great impact on inertial navigation systems.As the transfer alignment is generally implemented using a filter to compensate the errors,its accuracy,rapidity and anti-disturbance capability are key properties to evaluate the filtering process.In terms of the superiority in dealing with the noise,H∞filtering has been used to improve the anti-disturbance capability of the transfer alignment.However,there is still a need to incorporate system uncertainty due to various dynamic conditions.Based on the structural value theory,a robustness stability analysis method has been proposed for the transfer alignment to evaluate the impact of uncertainty on the navigation system.The mathematical derivation has been elaborated in this paper,and the simulation has been carried out to verify the effectiveness of the algorithm.
文摘The alignment accuracy of the strap-down inertial navigation system (SINS) of airborne weapon is greatly degraded by the dynamic wing flexure of the aircraft. An adaptive Kalman filter uses innovation sequences based on the maximum likelihood estimated criterion to adapt the system noise covariance matrix and the measurement noise covariance matrix on line, which is used to estimate the misalignment if the model of wing flexure of the aircraft is unknown. From a number of simulations, it is shown that the accuracy of the adaptive Kalman filter is better than the conventional Kalman filter, and the erroneous misalignment models of the wing flexure of aircraft will cause bad estimation results of Kalman filter using attitude match method.
文摘The transfer alignment of SINS/GPS navigation system of a high-speed marine missile was investigated. With the help of the big acceleration of a high-speed missile, the transfer alignment was changed into a three-time alignment. The azimuth alignment was coarsely finished in 10s in the first time alignment, the horizontal alignment was accurately and rapidly finished in the second time alignment, and the azimuth alignment was accurately finished in the third time alignment. Because the second time alignment and the third time alignment were finished by GPS after the missile was launched, the horizontal alignment and the second azimuth alignment got rid of the influence of the warship body flexibility deforming. The precision and rapidity of the horizontal alignment were prominently increased due to the vertical launch of the marine missile with the big acceleration. Simulation verifies the effectiveness of the proposed alignment method.
文摘In order to meet the demand of high-precision heading angle transmission in the transfer alignment of inertial navigation system on moving base,the analytical function relationship between the hull deforma-tion and the turning angular velocity and angular acceleration was derived by using the classical beam theory based on the analysis of the equivalent load exerted by the hydrodynamic force and inertia force on the hull structure during the turning process under the combined action of the steering rudder mo-ment and wave force.The objective law between the angular motion and the azimuth deformation angle of the hull under the combined action of maneuvering and sea waves was revealed.Finally,the correc-tion coefficients were determined according to the left turn and right turn motions of the hull by using the measured data of the ship in the sea trial during the S-shape maneuvering navigation,and the az-imuth deformation angle correction was completed.The results indicated that the application of the Qu’s bending deformation correction formula could greatly reduce the influence of the hull flexural deforma-tion on the heading angle accuracy,meet the needs of high-precision heading angle transmission,and fully verify the correctness of the hull azimuth deformation law and the heading angle transmission er-ror correction theory.This theory and method provided technical support for establishing high-precision distributed digital reference in the field of transfer alignment of inertial navigation on moving base and the application of heading angle transfer of other shipborne equipment.