The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are ...The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are complex,the edges are blurred,and the sample numbers are unbalanced.To solve these problems,this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model(MCIF-Transformer Mask RCNN)for PET/CT lung tumor instance segmentation,The main innovative works of this paper are as follows:Firstly,the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images.The pixel dependence relationship is established in local and non-local fields to improve the model perception ability.Secondly,the Cross-scale Interactive Feature Enhancement auxiliary network is designed to provide the shallow features to the deep features,and the cross-scale interactive feature enhancement module(CIFEM)is used to enhance the attention ability of the fine-grained features.Thirdly,the Cross-scale Interactive Feature fusion FPN network(CIF-FPN)is constructed to realize bidirectional interactive fusion between deep features and shallow features,and the low-level features are enhanced in deep semantic features.Finally,4 ablation experiments,3 comparison experiments of detection,3 comparison experiments of segmentation and 6 comparison experiments with two-stage and single-stage instance segmentation networks are done on PET/CT lung medical image datasets.The results showed that APdet,APseg,ARdet and ARseg indexes are improved by 5.5%,5.15%,3.11%and 6.79%compared with Mask RCNN(resnet50).Based on the above research,the precise detection and segmentation of the lesion region are realized in this paper.This method has positive significance for the detection of lung tumors.展开更多
Purpose–The safe operation of the metro power transformer directly relates to the safety and efficiency of the entire metro system.Through voiceprint technology,the sounds emitted by the transformer can be monitored ...Purpose–The safe operation of the metro power transformer directly relates to the safety and efficiency of the entire metro system.Through voiceprint technology,the sounds emitted by the transformer can be monitored in real-time,thereby achieving real-time monitoring of the transformer’s operational status.However,the environment surrounding power transformers is filled with various interfering sounds that intertwine with both the normal operational voiceprints and faulty voiceprints of the transformer,severely impacting the accuracy and reliability of voiceprint identification.Therefore,effective preprocessing steps are required to identify and separate the sound signals of transformer operation,which is a prerequisite for subsequent analysis.Design/methodology/approach–This paper proposes an Adaptive Threshold Repeating Pattern Extraction Technique(REPET)algorithm to separate and denoise the transformer operation sound signals.By analyzing the Short-Time Fourier Transform(STFT)amplitude spectrum,the algorithm identifies and utilizes the repeating periodic structures within the signal to automatically adjust the threshold,effectively distinguishing and extracting stable background signals from transient foreground events.The REPET algorithm first calculates the autocorrelation matrix of the signal to determine the repeating period,then constructs a repeating segment model.Through comparison with the amplitude spectrum of the original signal,repeating patterns are extracted and a soft time-frequency mask is generated.Findings–After adaptive thresholding processing,the target signal is separated.Experiments conducted on mixed sounds to separate background sounds from foreground sounds using this algorithm and comparing the results with those obtained using the FastICA algorithm demonstrate that the Adaptive Threshold REPET method achieves good separation effects.Originality/value–A REPET method with adaptive threshold is proposed,which adopts the dynamic threshold adjustment mechanism,adaptively calculates the threshold for blind source separation and improves the adaptability and robustness of the algorithm to the statistical characteristics of the signal.It also lays the foundation for transformer fault detection based on acoustic fingerprinting.展开更多
针对主流Transformer网络仅对输入像素块做自注意力计算而忽略了不同像素块间的信息交互,以及输入尺度单一导致局部特征细节模糊的问题,本文提出一种基于Transformer并用于处理视觉任务的主干网络ConvFormer. ConvFormer通过所设计的多...针对主流Transformer网络仅对输入像素块做自注意力计算而忽略了不同像素块间的信息交互,以及输入尺度单一导致局部特征细节模糊的问题,本文提出一种基于Transformer并用于处理视觉任务的主干网络ConvFormer. ConvFormer通过所设计的多尺度混洗自注意力模块(Channel-Shuffle and Multi-Scale attention,CSMS)和动态相对位置编码模块(Dynamic Relative Position Coding,DRPC)来聚合多尺度像素块间的语义信息,并在前馈网络中引入深度卷积提高网络的局部建模能力.在公开数据集ImageNet-1K,COCO 2017和ADE20K上分别进行图像分类、目标检测和语义分割实验,ConvFormer-Tiny与不同视觉任务中同量级最优网络RetNetY-4G,Swin-Tiny和ResNet50对比,精度分别提高0.3%,1.4%和0.5%.展开更多
基金funded by National Natural Science Foundation of China No.62062003Ningxia Natural Science Foundation Project No.2023AAC03293.
文摘The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are complex,the edges are blurred,and the sample numbers are unbalanced.To solve these problems,this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model(MCIF-Transformer Mask RCNN)for PET/CT lung tumor instance segmentation,The main innovative works of this paper are as follows:Firstly,the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images.The pixel dependence relationship is established in local and non-local fields to improve the model perception ability.Secondly,the Cross-scale Interactive Feature Enhancement auxiliary network is designed to provide the shallow features to the deep features,and the cross-scale interactive feature enhancement module(CIFEM)is used to enhance the attention ability of the fine-grained features.Thirdly,the Cross-scale Interactive Feature fusion FPN network(CIF-FPN)is constructed to realize bidirectional interactive fusion between deep features and shallow features,and the low-level features are enhanced in deep semantic features.Finally,4 ablation experiments,3 comparison experiments of detection,3 comparison experiments of segmentation and 6 comparison experiments with two-stage and single-stage instance segmentation networks are done on PET/CT lung medical image datasets.The results showed that APdet,APseg,ARdet and ARseg indexes are improved by 5.5%,5.15%,3.11%and 6.79%compared with Mask RCNN(resnet50).Based on the above research,the precise detection and segmentation of the lesion region are realized in this paper.This method has positive significance for the detection of lung tumors.
基金the China Academy of Railway Sciences Corporation Limited(2023YJ257).
文摘Purpose–The safe operation of the metro power transformer directly relates to the safety and efficiency of the entire metro system.Through voiceprint technology,the sounds emitted by the transformer can be monitored in real-time,thereby achieving real-time monitoring of the transformer’s operational status.However,the environment surrounding power transformers is filled with various interfering sounds that intertwine with both the normal operational voiceprints and faulty voiceprints of the transformer,severely impacting the accuracy and reliability of voiceprint identification.Therefore,effective preprocessing steps are required to identify and separate the sound signals of transformer operation,which is a prerequisite for subsequent analysis.Design/methodology/approach–This paper proposes an Adaptive Threshold Repeating Pattern Extraction Technique(REPET)algorithm to separate and denoise the transformer operation sound signals.By analyzing the Short-Time Fourier Transform(STFT)amplitude spectrum,the algorithm identifies and utilizes the repeating periodic structures within the signal to automatically adjust the threshold,effectively distinguishing and extracting stable background signals from transient foreground events.The REPET algorithm first calculates the autocorrelation matrix of the signal to determine the repeating period,then constructs a repeating segment model.Through comparison with the amplitude spectrum of the original signal,repeating patterns are extracted and a soft time-frequency mask is generated.Findings–After adaptive thresholding processing,the target signal is separated.Experiments conducted on mixed sounds to separate background sounds from foreground sounds using this algorithm and comparing the results with those obtained using the FastICA algorithm demonstrate that the Adaptive Threshold REPET method achieves good separation effects.Originality/value–A REPET method with adaptive threshold is proposed,which adopts the dynamic threshold adjustment mechanism,adaptively calculates the threshold for blind source separation and improves the adaptability and robustness of the algorithm to the statistical characteristics of the signal.It also lays the foundation for transformer fault detection based on acoustic fingerprinting.
文摘针对主流Transformer网络仅对输入像素块做自注意力计算而忽略了不同像素块间的信息交互,以及输入尺度单一导致局部特征细节模糊的问题,本文提出一种基于Transformer并用于处理视觉任务的主干网络ConvFormer. ConvFormer通过所设计的多尺度混洗自注意力模块(Channel-Shuffle and Multi-Scale attention,CSMS)和动态相对位置编码模块(Dynamic Relative Position Coding,DRPC)来聚合多尺度像素块间的语义信息,并在前馈网络中引入深度卷积提高网络的局部建模能力.在公开数据集ImageNet-1K,COCO 2017和ADE20K上分别进行图像分类、目标检测和语义分割实验,ConvFormer-Tiny与不同视觉任务中同量级最优网络RetNetY-4G,Swin-Tiny和ResNet50对比,精度分别提高0.3%,1.4%和0.5%.