Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes...Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and patho- genicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicity. In this study, the latest molecular chaperone system associated with endoplasmic re- ticulum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular mechanisms will help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases.展开更多
This study aimed to observe the effects of tyroserleutide (tyrosyl-seryl-leucine, YSL) on the growth of human hepatocarcinoma BEL-7402 that was transplanted into nude mice, and explore its anti-tumor mechanism prelimi...This study aimed to observe the effects of tyroserleutide (tyrosyl-seryl-leucine, YSL) on the growth of human hepatocarcinoma BEL-7402 that was transplanted into nude mice, and explore its anti-tumor mechanism preliminarily. YSL, at doses of 80 μg·kg?1·d?1, 160 μg·kg?1·d?1 and 320 μg·kg?1·d?1 significantly inhibited the growth of the human hepatocarcinoma BEL-7402 tumor in nude mice, producing inhibition of 21.66%, 41.34%, and 34.78%, respectively. Ultra structure of BEL-7402 tumor in nude mice showed that YSL could induce tumor cells apoptosis and necrosis, cell organelle mitochondria and endoplasmic reticulum damage, and calcium over-load. By confocal laser scanning microscopy and flow cytometry, we found that 10 μg/mL YSL rapidly induced an increase of the concentration of cytoplasmic free calcium in BEL-7402 cells in vitro, and maintained high concentrations of cytoplasmic free calcium for 1 h. Then the calcium concentration began to decrease after 2 h, and was lower than that of the control group at 4 h and 24 h (p<0.05). YSL also decreased the mitochondrial transmembrane potential of BEL-7402 cells in vitro, but had no effect on the calcium homeostasis or mitochondrial transmembrane potential of Chang liver hepatocytes. So affecting calcium homeostasis, then inducing apoptosis and necrosis may be a mechanism by which YSL inhibits the tumor growth in animal model.展开更多
基金supported by the National Natural Science Foundation of China,No.31001048
文摘Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and patho- genicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicity. In this study, the latest molecular chaperone system associated with endoplasmic re- ticulum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular mechanisms will help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases.
基金This study was supported by the“863”Project(Grant No.2004AA2Z3170)from the Nat ional Important Project Grant(Grant No.03007)from the Ministry of Education of ChinaPre-Explore of Key Basic Science Program of Ministry of Science and Technology ofChina(Grant No.2003CCA04300).
文摘This study aimed to observe the effects of tyroserleutide (tyrosyl-seryl-leucine, YSL) on the growth of human hepatocarcinoma BEL-7402 that was transplanted into nude mice, and explore its anti-tumor mechanism preliminarily. YSL, at doses of 80 μg·kg?1·d?1, 160 μg·kg?1·d?1 and 320 μg·kg?1·d?1 significantly inhibited the growth of the human hepatocarcinoma BEL-7402 tumor in nude mice, producing inhibition of 21.66%, 41.34%, and 34.78%, respectively. Ultra structure of BEL-7402 tumor in nude mice showed that YSL could induce tumor cells apoptosis and necrosis, cell organelle mitochondria and endoplasmic reticulum damage, and calcium over-load. By confocal laser scanning microscopy and flow cytometry, we found that 10 μg/mL YSL rapidly induced an increase of the concentration of cytoplasmic free calcium in BEL-7402 cells in vitro, and maintained high concentrations of cytoplasmic free calcium for 1 h. Then the calcium concentration began to decrease after 2 h, and was lower than that of the control group at 4 h and 24 h (p<0.05). YSL also decreased the mitochondrial transmembrane potential of BEL-7402 cells in vitro, but had no effect on the calcium homeostasis or mitochondrial transmembrane potential of Chang liver hepatocytes. So affecting calcium homeostasis, then inducing apoptosis and necrosis may be a mechanism by which YSL inhibits the tumor growth in animal model.