期刊文献+
共找到6,324篇文章
< 1 2 250 >
每页显示 20 50 100
Behavior of transporting pipeline sections without and with hydrogen exposure based on full-scale tests
1
作者 Nóra Nagy János Lukács 《China Welding》 CAS 2024年第3期14-24,共11页
Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on... Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on full-scale pipeline section,including the potentially more dangerous places than the main pipe,the girth welds.For the investigations,pipeline sections of P355NH steel with girth welds were prepared and exposed to pure hydrogen at twice the maximum allowable operating pressure for 41 days.Subsequently,full-scale burst tests were carried out and specimens were cut and prepared from the typical locations of the failed pipeline sections for mechanical,and macro-and microstructural investigations.The results obtained were evaluated and compared with data from previous full-scale tests on pipeline sections without hydrogen exposure.The results showed differences in the behavior of pipeline sections loaded in different ways,with different characteristics of the materials and the welded joints,both in the cases without hydrogen exposure and in the cases exposed to hydrogen. 展开更多
关键词 gas transporting pipeline full-scale pipeline test complex loading condition hydrogen exposure safety factor
下载PDF
Transporting Cold Atoms towards a GaN-on-Sapphire Chip via an Optical Conveyor Belt
2
作者 徐磊 王凌潇 +8 位作者 陈广杰 陈梁 杨元昊 徐新标 刘爱萍 李传锋 郭光灿 邹长铃 项国勇 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第9期48-53,共6页
Trapped atoms on photonic structures inspire many novel quantum devices for quantum information processing and quantum sensing.Here,we demonstrate a hybrid photonic-atom chip platform based on a Ga N-onsapphire chip a... Trapped atoms on photonic structures inspire many novel quantum devices for quantum information processing and quantum sensing.Here,we demonstrate a hybrid photonic-atom chip platform based on a Ga N-onsapphire chip and the transport of an ensemble of atoms from free space towards the chip with an optical conveyor belts.Due to our platform’s complete optical accessibility and careful control of atomic motion near the chip with a conveyor belt,successful atomic transport towards the chip is made possible.The maximum transport efficiency of atoms is about 50%with a transport distance of 500μm.Our results open up a new route toward the efficient loading of cold atoms into the evanescent-field trap formed by the photonic integrated circuits,which promises strong and controllable interactions between single atoms and single photons. 展开更多
关键词 QUANTUM SAPPHIRE TRANSPORT
下载PDF
Review of current progress in hole-transporting materials for perovskite solar cells 被引量:5
3
作者 Prerna Mahajan Bhavya Padha +5 位作者 Sonali Verma Vinay Gupta Ram Datt Wing Chung Tsoi Soumitra Satapathi Sandeep Arya 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期330-386,共57页
Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an... Recent advancements in perovskites’ application as a solar energy harvester have been astonishing. The power conversion efficiency(PCE) of perovskite solar cells(PSCs) is currently reaching parity(>25 percent), an accomplishment attained over past decades. PSCs are seen as perovskites sandwiched between an electron transporting material(ETM) and a hole transporting material(HTM). As a primary component of PSCs, HTM has been shown to have a considerable effect on solar energy harvesting, carrier extraction and transport, crystallization of perovskite, stability, and price. In PSCs, it is still necessary to use a HTM.While perovskites are capable of conducting holes, they are present in trace amounts, necessitating the use of an HTM layer for efficient charge extraction. In this review, we provide an understanding of the significant forms of HTM accessible(inorganic, polymeric and small molecule-based HTMs), to motivate further research and development of such materials. The identification of additional criteria suggests a significant challenge to high stability and affordability in PSC. 展开更多
关键词 Hole transporting material Perovskite solar cells Power conversion efficiency STABILITY
下载PDF
Influence of wave and current on deep-sea mining transporting system 被引量:3
4
作者 XU Hai-liang ZHOU Gang +1 位作者 WU Bo WU Wan-rong 《Journal of Central South University》 SCIE EI CAS 2012年第1期144-149,共6页
As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transportin... As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transporting pipe is under the forces of gravity,inner liquid,buoyancy as well as hydrodynamic force,geometric nonlinear finite element theory has been applied to analyzing the transporting system.Conclusions can be drawn as follows.Under the interaction of waves and currents,node forces FX and FZ acted by the transporting pipe on the mining vehicle are less than 2 kN,which indicates that waves and currents have little influence on the spatial shape of the transporting pipe and the mining vehicle movement.On the other hand,the horizontal force acting on the mining ship could be as large as 106 830 N,which has great influence on the mining system. 展开更多
关键词 carbon fiber composite pipe waves and ocean currents finite element mineral transporting system mechanical analysis
下载PDF
Improving the performance of arylamine-based hole transporting materials in perovskite solar cells: Extending π-conjugation length or increasing the number of side groups? 被引量:2
5
作者 Xuepeng Liu Fantai Kong +7 位作者 Wangchao Chen Ting Yu Yin Huang Tasawar Hayat Ahmed Alsaedi Hongxia Wang Jian Chen Songyuan Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1409-1414,共6页
In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups c... In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups compared with reference compound on the photophysical, electrochemical, hole mobility properties and performance in perovskite solar cells were further studied. It is noted that these two kinds of molecular modifications can significantly lower the HOMO level and improve the hole mobility, thus improving the hole injection from valence band of perovskite. On the other hand, the compound with more side groups showed higher hole injection efficiency due to lower HOMO level and higher hole mo- bility compared with the compound with extending π-conjugation length. The perovskite solar cells with the modified molecules as hole transporting materials showed a higher efficiency of 15.40% and 16.95%, respectively, which is better than that of the reference compound (13.18%). Moreover, the compound with increasing number of side groups based devices showed comparable photovoltaic performance with that of conventional spiro-OMeTAD (16.87%). 展开更多
关键词 Hole transporting materials PEROVSKITE π-conjugation length Side groups
下载PDF
Diketopyrrolopyrrole based D-π-A-π-D type small organic molecules as hole transporting materials for perovskite solar cells 被引量:1
6
作者 Haoliang Cheng Xiaojuan Zhao +4 位作者 Yan Shen Mingkui Wang Lingyun Wang Herbert Meier Derong Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1175-1182,共8页
Three novel diketopyrrolopyrrole (DPP) based small organic molecules were synthesized as hole transporting materials for perovskite solar cells. The effects of different donors and zr bridges on the performance of p... Three novel diketopyrrolopyrrole (DPP) based small organic molecules were synthesized as hole transporting materials for perovskite solar cells. The effects of different donors and zr bridges on the performance of perovskite solar cells (PSCs) were discussed. The efficiency of TPADPP-1, TPADPP-2. PTZDPP-2 was 5.10%, 9.85% and 8.16% respectively. Compared to TPADPP-2, the voltage of PTZDPP-2 was higher. Because the electron-donatingability of phenothiazine based donor was larger than that of triphenylamine based donor, the HOMO level of PTZDPP-2 was lower than that of TPADPP-2. The results indicated that the diketopyrrolopyrrole based D-π-A-π-D type small organic molecule might be a promising hole trans- porting material in the perovskite solar cells. 展开更多
关键词 Perovskite solar cells DIKETOPYRROLOPYRROLE Hole transporting materials Donors π bridges
下载PDF
Improved performance of organic light-emitting diodes with dual electron transporting layers 被引量:1
7
作者 焦志强 吴晓明 +4 位作者 华玉林 穆雪 毕文涛 白娟娟 印寿根 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期448-450,共3页
In this study the performance of organic light-emitting diodes (OLEDs) are enhanced significantly, which is based on dual electron transporting layers (13phen/CuPc). By adjusting the thicknesses of Bphen and CuPc,... In this study the performance of organic light-emitting diodes (OLEDs) are enhanced significantly, which is based on dual electron transporting layers (13phen/CuPc). By adjusting the thicknesses of Bphen and CuPc, the maximal luminescence, the maximal current efficiency, and the maximal power efficiency of the device reach 17570 cd/m^2 at 11 V, and 5.39 cd/A and 3.39 lm/W at 3.37 mA/cm^2 respectively, which are enhanced approximately by 33.4%, 39.3%, and 68.9%, respectively, compared with those of the device using Bphen only for an electron transporting layer. These results may provide some valuable references for improving the electron injection and the transportation of OLED. 展开更多
关键词 organic light-emitting diodes dual electron transporting layers CUPC
下载PDF
A Quantitative Method for Evaluating the Transporting Capacity of Oil-Source Faults in Shallow Formation of Oil-Rich Sags 被引量:4
8
作者 JIANG Youlu ZHAO Kai +1 位作者 LIU Jingdong LU Xueying 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第4期1678-1679,共2页
Objective Oil-source faults have an important effect on reservoir formation and distribution in shallow formations with non- hydrocarbon generation in oil-rich fault-related basins (Jiang Youlu et al., 2015). Howev... Objective Oil-source faults have an important effect on reservoir formation and distribution in shallow formations with non- hydrocarbon generation in oil-rich fault-related basins (Jiang Youlu et al., 2015). However, the fault transporting capacity cannot be evaluated quantitatively at present. Taking the Zhanhua Sag in the Bohai Bay Basin as an example, this work analyzed the factors influencing the transporting capacity of the oil-source faults and proposed a quantitative method for evaluating their transporting capacity. 展开更多
关键词 A Quantitative Method for Evaluating the transporting Capacity of Oil-Source Faults in Shallow Formation of Oil-Rich Sags
下载PDF
Progress in hole-transporting materials for perovskite solar cells 被引量:3
9
作者 Xichuan Yang Haoxin Wang +2 位作者 Bin Cai Ze Yu Licheng Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期650-672,共23页
In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficien... In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficiency of this new class of solar cells has been increased to a point where they are beginning to compete with more established technologies. Although PSCs have evolved a variety of structures, the use of hole-transporting materials(HTMs) remains indispensable. Here, an overview of the various types of available HTMs is presented. This includes organic and inorganic HTMs and is presented alongside recent progress in associated aspects of PSCs, including device architectures and fabrication techniques to produce high-quality perovskite films. The structure, electrochemistry, and physical properties of a variety of HTMs are discussed, highlighting considerations for those designing new HTMs. Finally, an outlook is presented to provide more concrete direction for the development and optimization of HTMs for highefficiency PSCs. 展开更多
关键词 Perovskite solar cells Efficient charge extraction Hole transporting materials Recombination losses
下载PDF
High isotropic dispiro structure hole transporting materials for planar perovskite solar cells
10
作者 Bin Cai Xichuan Yang +3 位作者 Haoxin Wang Weihan Wang Jincheng An Licheng Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第5期152-158,共7页
Two novel fluorene-based hole transporting materials (HTMs) were synthesized to be used in perovskite solar cells (PSCs). C102 was designed based on C101 by simply linking the two carb on-carbon single bonds to compos... Two novel fluorene-based hole transporting materials (HTMs) were synthesized to be used in perovskite solar cells (PSCs). C102 was designed based on C101 by simply linking the two carb on-carbon single bonds to compose a "dispiro" structure. Their typically similar structures cause them sharing almost the same energy levels. However, their photovoltaic performances are quite different due to the small variations. The PSC that contained the "dispiro" structure, C102, reached a power conversion efficiency (PCE) of 17.4%, while the device contained C101, obtained a lower PCE of 15.5%. Electrochemical properties and Photovoltaic characterization of the two materials have been investigated to explain the result. It is shown that C102 has a stronger ability to transport holes and resist the charge recombination. Thus, the dispiro structure should be more appropriate being used as HTM in PSCs. 展开更多
关键词 Dispiro HOLE transporting MATERIALS PLANAR PEROVSKITE solar cells
下载PDF
Tetrabenzotriazacorrole and its derivatives as undopea hole transporting materials for perovskite solar cells:Synthesis,device fabrication,and device performance
11
作者 Xian-Fu Zhang Chang Liu +1 位作者 Jianchang Wu Baomin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期139-147,共9页
Phosphorous tetrabenzotriazacorrole(TBC)and its two soluble derivatives(TBC-1 and TBC-2)were synthesized and used for the first time as undoped hole transporting materials(HTMs)in MAPbI3 perovskite solar cells(PSCs).T... Phosphorous tetrabenzotriazacorrole(TBC)and its two soluble derivatives(TBC-1 and TBC-2)were synthesized and used for the first time as undoped hole transporting materials(HTMs)in MAPbI3 perovskite solar cells(PSCs).Their performance in PSCs was measured and compared with that of SpiroOMeTAD and phthalocyanine precursor.The fundamental properties related to HTMs are also examined.These novel HTMs are easily prepared,cost-effective,and solution processable.The materials exhibited much higher hole transport mobility and broader light absorption than pristine Spiro-OMeTAD and phthalocyanine precursor.They can work efficiently in the absence of any dopant for devices composed of FTO/cp-TiO2/mp-TiO2/MAPbI3/HTM/Au.The undoped mesoscopic solar cell devices based on TBC exhibited a promising power conversion efficiency(PCE)of up to 16.2%(measured at 100 mWcm2 illumination,AM 1.5 G),together with good long-term stability under ambient conditions.This PCE of 16.2%observed using TBC is remarkably higher than the 11.2%observed using undoped Spiro-OMeTAD and also much better than the 8.70%observed using its phthalocyanine precursor.As to substitution effects,α-substituted TBC-1 was found to be a better HTM thanβ-substituted TBC-2(PCE 11.4%)and unsubstituted TBC-3(PCE 6.81%)under the same conditions.These results provide the basis for further exploiting TBC compounds as a new type of low-cost and effective HTM for PSCs. 展开更多
关键词 PEROVSKITE SOLAR cell HOLE transporting material Tetrabenzotriazacorrole PHTHALOCYANINE
下载PDF
TRUCK TRANSPORTING SYSTEM
12
作者 董希斌 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1995年第4期68-72,共5页
The paper was a truck transporting system that based on system engineering theory and driver, truck-and-train, road and transporting environment were essential factors. It analyzed andstudied nine subsystems consisted... The paper was a truck transporting system that based on system engineering theory and driver, truck-and-train, road and transporting environment were essential factors. It analyzed andstudied nine subsystems consisted of the tfour tactors, ensured running safety, high efficieney and lowconsumption of transporting truck and increased using time of truck and road. 展开更多
关键词 DRIVER Truck-and-train ROAD transporting environment SUBSYSTEM
下载PDF
Evaluation of Stress Corrosion Cracking Damage to an API 5L X52 Pipeline Transporting Ammonia: A Case Study 被引量:1
13
作者 José Luis Mora-Mendoza Mónica Jazmín Hernández-Gayosso +3 位作者 Daniel Antonio Morales-Serrat Octaviano Roque-Oms Digna Alejandra Del Angel Gerardo Zavala-Olivares 《Materials Sciences and Applications》 2016年第10期610-622,共13页
The high number of leak events that took place in recent years at a 25.4 cm (10”)&Oslash;pipeline transporting anhydrous liquid ammonia, located in the Southeast of Mexico, was the main reason to carry out a numb... The high number of leak events that took place in recent years at a 25.4 cm (10”)&Oslash;pipeline transporting anhydrous liquid ammonia, located in the Southeast of Mexico, was the main reason to carry out a number of field studies and laboratory tests that helped establish not only the failure causes but also mitigation and control solutions. The performed activities included direct evaluation at failure sites, total repair programs, metallographic studies and pipeline flexibility analyses. The obtained results were useful to conclude that the failures obeyed a cracking mechanism by Stress Corrosion Cracking (SCC) which was caused by the combined effect of different factors: high stress resistance, high hardness of the base metal with a microstructure prone to brittleness and residual strains originated during the pipeline construction. From the operative, logistic and financial standpoints, it is not feasible to release the stress of approximately 22 km of pipeline. Therefore, the only viable solution is to install a new pipeline with suitable fabrication, construction and installation specifications aimed at preventing the SCC phenomenon. 展开更多
关键词 Stress Corrosion Cracking Residual Stress Ammonia transporting Pipeline
下载PDF
Internal resonance of an axially transporting beam with a two-frequency parametric excitation
14
作者 Dengbo ZHANG Youqi TANG +2 位作者 Ruquan LIANG Yuanmei SONG Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第12期1805-1820,共16页
This paper investigates the transverse 3:1 internal resonance of an axially transporting nonlinear viscoelastic Euler-Bernoulli beam with a two-frequency parametric excitation caused by a speed perturbation.The Kelvin... This paper investigates the transverse 3:1 internal resonance of an axially transporting nonlinear viscoelastic Euler-Bernoulli beam with a two-frequency parametric excitation caused by a speed perturbation.The Kelvin-Voigt model is introduced to describe the viscoelastic characteristics of the axially transporting beam.The governing equation and the associated boundary conditions are obtained by Newton’s second law.The method of multiple scales is utilized to obtain the steady-state responses.The RouthHurwitz criterion is used to determine the stabilities and bifurcations of the steady-state responses.The effects of the material viscoelastic coefficient on the dynamics of the transporting beam are studied in detail by a series of numerical demonstrations.Interesting phenomena of the steady-state responses are revealed in the 3:1 internal resonance and two-frequency parametric excitation.The approximate analytical method is validated via a differential quadrature method. 展开更多
关键词 axially transporting viscoelastic beam internal resonance two-frequency excitation nonlinear vibration perturbation technique
下载PDF
Heteroatom engineering on spiro-type hole transporting materials for perovskite solar cells
15
作者 Xianfu Zhang Xuepeng Liu +7 位作者 Nan Wu Rahim Ghadari Mingyuan Han Ying Wang Yong Ding Molang Cai Zuopeng Qu Songyuan Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期19-26,共8页
A series of spiro-type hole transporting materials, spiro-OMe TAD, spiro-SMe TAD and spiro-OSMe TAD,with methoxy, methylsulfanyl or half methoxy and half methylsulfanyl terminal groups are designed and prepared. The i... A series of spiro-type hole transporting materials, spiro-OMe TAD, spiro-SMe TAD and spiro-OSMe TAD,with methoxy, methylsulfanyl or half methoxy and half methylsulfanyl terminal groups are designed and prepared. The impact of varied terminal groups on bulk properties, such as photophysical, electrochemical, thermal, hole extraction, and photovoltaic performance in perovskite solar cells is investigated.It is noted that the terminal groups of the hole transporting material with half methoxy and half methylsulfanyl exhibit a better device performance and decreased hysteresis compared with all methoxy or methylsulfanyl counterparts due to better film-forming ability and improved hole extraction capability.Promisingly, the spiro-OSMe TAD also shows comparable performance than high-purity commercial spiro-OMe TAD. Moreover, the highest power conversion efficiency of the optimized device employing spiro-OSMe TAD exceeding 20% has been achieved. 展开更多
关键词 Hole transporting materials Methylsulfanyl METHOXY Perovskite solar cells
下载PDF
Crucial role of charge transporting layers on ion migration in perovskite solar cells
16
作者 Abasi Abudulimu Lang Liu +3 位作者 Guilin Liu Nijiati Aimaiti Bohuslav Rezek Qi Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期132-137,I0005,共7页
The device preconditioning dependent hysteresis and the consequential performance degradation hinder the actual performance and stability of the perovskite solar cells. Ion migration and charge trapping in the perovsk... The device preconditioning dependent hysteresis and the consequential performance degradation hinder the actual performance and stability of the perovskite solar cells. Ion migration and charge trapping in the perovskite with large contribution from grain boundaries are the most common interpretations for the hysteresis. Yet, the high performing devices often include intermediate hole and electron transporting layers, which can further complicate the dynamical process in the device. Here, by using Kelvin Probe Force Microscopy and Confocal Photoluminescence Microscopy, we elucidate the impact of chargetransporting layers and excess MAI on the spatial and temporal variations of the photovoltage on the MAPbI3-based solar cells. By studying the devices layer by layer, we found that the light-induced ion migration occurs predominantly in the presence of an imbalanced charge extraction in the solar cells, and the charge transporting layers play crucial role in suppressing it. Careful selection and processing of the electron and hole-transporting materials are thus essential for making perovskite solar cells free from the ion migration effect. 展开更多
关键词 Perovskite solar cells Ion migration KPFM Charge transporting material
下载PDF
Highly stable perovskite solar cells with a novel Ni-based metal organic complex as dopant-free hole-transporting material
17
作者 Tai Wu Linqin Wang +6 位作者 Rongjun Zhao Rongshan Zhuang Kanghong Zhao Gaoyuan Liu Jing Huang Licheng Sun Yong Hua 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期312-318,共7页
Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and... Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs. 展开更多
关键词 Perovskite solar cell Hole transporting material Organic metal complex Dopant-free
下载PDF
C≡N-based carbazole-arylamine hole transporting materials for perovskite solar cells: Substitution position matters
18
作者 Zi'an Zhou Xianfu Zhang +6 位作者 Rahim Ghadari Xuepeng Liu Wenjun Wang Yong Ding Molang Cai Jia Hong Pan Songyuan Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期563-571,I0013,共10页
Hole transporting materials(HTMs)containing passivating groups for perovskite materials have attracted much attention for efficient and stable perovskite solar cells(PSCs).Among them,C≡N-based molecules have been pro... Hole transporting materials(HTMs)containing passivating groups for perovskite materials have attracted much attention for efficient and stable perovskite solar cells(PSCs).Among them,C≡N-based molecules have been proved as efficient HTMs.Herein,a series of novel C≡N functionalized carbazole-arylamine derivatives with variable C≡N substitution positions(para,meta,and ortho)on benzene-carbazole skeleton(on the adjacent benzene of carbazole)were synthesized(p-HTM,m-HTM and o-HTM).The experimental results exhibit that the substitution positions of the Ctriple bondN unit on HTMs have minor difference on the HOMO energy level and hydrophobicity.m-HTM has a relatively lower glass transition temperature compared with that of p-HTM and o-HTM.The functional theory calculations show that the C≡N located on meta position exposed very well,and the exposure direction is also the same with the methoxy.Upon applying these molecules as HTMs in PSCs,their device performance is found to sensitively depend on the substitution position of the C≡N unit on the molecule skeleton.The devices using m-HTM and o-HTM exhibit better performance than that of p-HTM.Moreover,m-HTM-based devices exhibit better light-soaking performance and long-term stability,which could be resulted from better interaction with the perovskite according to DFT results.Moreover,we further prepared a HTM with two C≡N units on the symmetrical meta position of molecular skeleton(2m-HTM).Interestingly,2m-HTM-based devices exhibit relatively inferior performance compared with that of the m-HTM,which could be resulted from weak negative electrical character of C≡N unit on 2m-HTM.The results give some new insights for designing ideal HTM for efficient and stable PSCs. 展开更多
关键词 Hole transporting materials Cyano group Substitution position Perovskite solar cells
下载PDF
Research on adaptive anti-rollover control of kiloton bridge transporting and laying vehicles
19
作者 郭锐 Shi Yu +2 位作者 Wang Chao Tian Yaya Zhao Jingyi 《High Technology Letters》 EI CAS 2017年第2期203-211,共9页
The SPMT construction method is a new rapid construction technology of large urban overpass with unblocked traffic,and unstability of SPMT construction method equipment cannot be accurately described due to the concre... The SPMT construction method is a new rapid construction technology of large urban overpass with unblocked traffic,and unstability of SPMT construction method equipment cannot be accurately described due to the concrete beam size,irregular shape and complex transport conditions,which is called kiloton bridge transporting and laying vehicle.The anti-rollover performance of SPMT suspension system is studied,and vehicle side slip angle and load transfer rate(LTR) are regarded as the evaluation indexes.An active suspension adaptive anti-rollover control model of SPMT,in which roll stability affected by the structural parameters and control parameters,is built based on fuzzy PID,and the effectiveness of the control method is verified through real vehicle test. 展开更多
关键词 kiloton bridge transporting and laying vehicle SPMT construction method active suspension adaptive anti-rollover control
下载PDF
Titanylphthalocyanine as hole transporting material for perovskite solar cells
20
作者 Mengna Sun Shirong Wang +2 位作者 Yin Xiao Zhihao Song Xianggao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期756-761,共6页
Titanylphthalocyanine (TiOPc) as hole transporting material (HTM) was successfully synthesized by a simple process with low cost. Perovskite solar cells using the TiOPc as HTM were fabricated and characterized. Ti... Titanylphthalocyanine (TiOPc) as hole transporting material (HTM) was successfully synthesized by a simple process with low cost. Perovskite solar cells using the TiOPc as HTM were fabricated and characterized. TiOPc as HTM plays an important role in increasing the power conversion efficiency (PCE) by minimizing recombi- nation losses at the perovskite/Au interface because TiOPc as HTM can extract photogenerated holes from the perovskite and then transport quickly these charges to the back metal electrode. In the research, the β-TiOPc gives a higher PCE than α-TiOPc for the devices due to sufficient transfer dynamics, The β-TiOPc was applied in perovskite solar cells without clopping to afford an impressive PCE of 5.05% under AM 1.5G illumination at the thickness of 40 nm which is competitive with spiro-OMeTAD at the same condition. The present work suggests a guideline for optimizing the photovoltaic properties ofperovskite solar cells using the TiOPc as the HTM. 展开更多
关键词 Perovskite Solar cell Titanylphthalocyanine Hole transporting material Power conversion efficiency
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部