Vertical GaN power MOSFET is a novel technology that offers great potential for power switching applications.Being still in an early development phase,vertical GaN devices are yet to be fully optimized and require car...Vertical GaN power MOSFET is a novel technology that offers great potential for power switching applications.Being still in an early development phase,vertical GaN devices are yet to be fully optimized and require careful studies to foster their development.In this work,we report on the physical insights into device performance improvements obtained during the development of vertical GaN-on-Si trench MOSFETs(TMOS’s)provided by TCAD simulations,enhancing the dependability of the adopted process optimization approaches.Specifically,two different TMOS devices are compared in terms of transfer-curve hysteresis(H)and subthreshold slope(SS),showing a≈75%H reduction along with a≈30%SS decrease.Simulations allow attributing the achieved improvements to a decrease in the border and interface traps,respectively.A sensitivity analysis is also carried out,allowing to quantify the additional trap density reduction required to minimize both figures of merit.展开更多
Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-sec...Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-section(σ_(p))of H1 are determined to be 0.75 eV and 4.67×10^(−15)cm^(2),respectively.Distribution of apparent trap concentration in space charge region is demonstrated.Temperature-enhanced emission process is revealed by decrease of emission time constant.Electricfield-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission(PFE)model.In addition,H1 shows point defect capture properties and temperature-enhanced capture kinetics.Taking both hole capture and emission processes into account during laser beam incidence,H1 features a trap concentration of 2.67×10^(15)cm^(−3).The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment.展开更多
Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammato ry reactions.Neutrophil extracellu...Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammato ry reactions.Neutrophil extracellular trap formation occurs through lytic and non-lytic pathways that can be further classified by formation mechanisms.Histones,von Willebrand factor,fibrin,and many other factors participate in the interplay between inflammation and thrombosis.Neuroimmunothrombosis summarizes the intricate interplay between inflammation and thrombosis during neural development and the pathogenesis of neurological diseases,providing cutting-edge insights into post-neurotrauma thrombotic events.The blood-brain barrier defends the brain and spinal cord against external assaults,and neutrophil extracellular trap involvement in blood-brain barrier disruption and immunothrombosis contributes substantially to secondary injuries in neurological diseases.Further research is needed to understand how neutrophil extracellular traps promote blood-brain barrier disruption and immunothrombosis,but recent studies have demonstrated that neutrophil extracellular traps play a crucial role in immunothrombosis,and identified modulators of neuro-immunothrombosis.However,these neurological diseases occur in blood vessels,and the mechanisms are unclear by which neutrophil extracellular traps penetrate the blood-brain barrier to participate in immunothrombosis in traumatic brain injury.This review discusses the role of neutrophil extracellular traps in neuro-immunothrombosis and explores potential therapeutic interventions to modulate neutrophil extracellular traps that may reduce immunothrombosis and improve traumatic brain injury outcomes.展开更多
The Cs_(2)NaInCl_(6) double perovskite is one of the most promising lead-free perovskites due to its exceptional stability and straightforward synthesis.However,it faces challenges related to inefficient photoluminesc...The Cs_(2)NaInCl_(6) double perovskite is one of the most promising lead-free perovskites due to its exceptional stability and straightforward synthesis.However,it faces challenges related to inefficient photoluminescence.Doping and high pressure are employed to tailor the optical properties of Cs_(2)NaInCl_(6).Herein,Sb^(3+)doped Cs_(2)NaInCl_(6)(Sb^(3+):Cs_(2)NaInCl_(6)) was synthesized and it exhibits blue emission with a photoluminescence quantum yield of up to 37.3%.Further,by employing pressure tuning,a blue stable emission under a very wide range from 2.7 GPa to 9.8 GPa is realized in Sb^(3+):Cs_(2)NaInCl_(6).Subsequently,the emission intensity of Sb^(3+):Cs_(2)NaInCl_(6) experiences a significant increase(3.3 times)at 19.0 GPa.It is revealed that the pressure-induced distinct emissions can be attributed to the carrier self-trapping and detrapping between Cs_(2)NaInCl_(6) and Sb^(3+).Notably,the lattice compression in the cubic phase inevitably modifies the band gap of Sb^(3+):Cs_(2)NaInCl_(6).Our findings provide valuable insights into effects of the high pressure in further boosting unique emission characteristics but also offer promising opportunities for development of doped double perovskites with enhanced optical functionalities.展开更多
The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique re...The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms.展开更多
The four-color three-step selective photoionization process of atom is very important in laser isotope separation technology.The population trapping phenomena and their influences are studied theoretically in monochro...The four-color three-step selective photoionization process of atom is very important in laser isotope separation technology.The population trapping phenomena and their influences are studied theoretically in monochromatic and non-monochromatic laser fields based on the density matrix theory in this work.Time evolutions of the photoionization properties of the four-color,three-step process are given.The population trapping effects occur intensely in monochromatic excitation,while it gradually turns weak as the laser bandwidth increases.The effects of bandwidth,Rabi frequency,time delay,and frequency detuning on the population trapping effect are investigated in monochromatic and non-monochromatic laser fields.The effects of laser process parameters and atomic parameters on the effective selective photoionization are also discussed.The ionization probability and selectivity factors,as evaluation indexes,are difficult to improve synchronously by adjusting systematic parameters.Besides,the existence of metastable state may play a negative role when its population is low enough.展开更多
Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancemen...Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.展开更多
We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles.Such tornado waves are named as tornado circular Pearcey beams(TCPBs)and produced by combining two circular Pear...We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles.Such tornado waves are named as tornado circular Pearcey beams(TCPBs)and produced by combining two circular Pearcey beams with different radii.Our theoretical exploration delves into various aspects,including the propagation dynamics,energy flux,orbital angular momentum,trapping force,and torque characteristics of TCPBs.The results reveal that the orbital angular momentum,trapping force,and torque of these beams can be finely tuned through the judicious manipulation of their topological charges(l_(1)and l_(2)).Notably,we observe a precise control mechanism wherein the force diminishes with|l_(1)+l_(2)|and|l_(1)-l_(2)|,while the torque exhibits enhancement by decreasing solely with|l_(1)+l_(2)|or increasing with|l_(1)-l_(2)|.These results not only provide quantitative insights into the optical trapping performance of TCPBs but also serve as a valuable reference for the ongoing development of innovative photonic tools.展开更多
We report a detailed study of magnetically levitated loading of ultracold ^(133)Cs atoms in a dimple trap.The atomic sample was produced in a combined red-detuned optical dipole trap and dimple trap formed by two smal...We report a detailed study of magnetically levitated loading of ultracold ^(133)Cs atoms in a dimple trap.The atomic sample was produced in a combined red-detuned optical dipole trap and dimple trap formed by two small waist beams crossing a horizontal plane.The magnetic levitation for the ^(133)Cs atoms forms an effective potential for a large number of atoms in a high spatial density.Dependence of the number of atoms loaded and trapped in the dimple trap on the magnetic field gradient and bias field is in good agreement with the theoretical analysis.This method has been widely used to obtain the Bose–Einstein condensation atoms for many atomic species.展开更多
Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the a...Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.展开更多
Cold trapped ions can be excellent sensors for ultra-precision detection of physical quantities,which strongly depends on the measurement situation at hand.The stylus ion trap,formed by two concentric cylinders over a...Cold trapped ions can be excellent sensors for ultra-precision detection of physical quantities,which strongly depends on the measurement situation at hand.The stylus ion trap,formed by two concentric cylinders over a ground plane,holds the promise of relatively simple structure and larger solid angle for optical access and fluorescence collection in comparison with the conventional ion traps.Here we report our fabrication and characterization of the first stylus ion trap constructed in China,aiming for studying quantum optics and sensing weak electric fields in the future.We have observed the stable confinement of the ion in the trapping potential for more than two hours and measured the heating rate of the trap to be dε/dt=7.10±0.13 meV/s by the Doppler recooling method.Our work starts a way to building practical quantum sensors with high efficiency of optical collection and with ultimate goal for contributing to future quantum information technology.展开更多
We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loadin...We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loading and atomic loss.The loading process normally is negligible in the evaporative cooling experiment on the ground, while it is significant in preparation of ultra-cold atoms in the space station. Normally, the atomic loading process is much weaker than the atomic loss process, and the atomic number in the central region of the trap decreases monotonically, as reported in previous research. However, when the atomic loading process is comparable to the atomic loss process, the atomic number in the central region of the trap will initially increase to a maximum value and then slowly decrease, and we have observed the phenomenon first. The increase of atomic number in the central region of the trap shows the presence of the loading process, and this will be significant especially under microgravity conditions. We build a theoretical model to analyze the competitive relationship, which coincides with the experimental results well. Furthermore, we have also given the predicted evolutionary behaviors under different conditions. This research provides a solid foundation for further understanding of the atomic transport process in traps. The analysis of loading process is of significant importance for preparation of ultra-cold atoms in a crossed optical dipole trap under microgravity conditions.展开更多
Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sedime...Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%.展开更多
We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin st...We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.展开更多
基金funding from the Electronic Component Systems for European Leadership Joint Undertaking (ECSEL JU),under grant agreement No.101007229support from the European Union’s Horizon 2020 Research and Innovation Programme,Germany,France,Belgium,Austria,Sweden,Spain,and Italy
文摘Vertical GaN power MOSFET is a novel technology that offers great potential for power switching applications.Being still in an early development phase,vertical GaN devices are yet to be fully optimized and require careful studies to foster their development.In this work,we report on the physical insights into device performance improvements obtained during the development of vertical GaN-on-Si trench MOSFETs(TMOS’s)provided by TCAD simulations,enhancing the dependability of the adopted process optimization approaches.Specifically,two different TMOS devices are compared in terms of transfer-curve hysteresis(H)and subthreshold slope(SS),showing a≈75%H reduction along with a≈30%SS decrease.Simulations allow attributing the achieved improvements to a decrease in the border and interface traps,respectively.A sensitivity analysis is also carried out,allowing to quantify the additional trap density reduction required to minimize both figures of merit.
基金supported by ShanghaiTech University Startup Fund 2017F0203-000-14the National Natural Science Foundation of China(Grant No.52131303)+1 种基金Natural Science Foundation of Shanghai(Grant No.22ZR1442300)in part by CAS Strategic Science and Technology Program(Grant No.XDA18000000).
文摘Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-section(σ_(p))of H1 are determined to be 0.75 eV and 4.67×10^(−15)cm^(2),respectively.Distribution of apparent trap concentration in space charge region is demonstrated.Temperature-enhanced emission process is revealed by decrease of emission time constant.Electricfield-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission(PFE)model.In addition,H1 shows point defect capture properties and temperature-enhanced capture kinetics.Taking both hole capture and emission processes into account during laser beam incidence,H1 features a trap concentration of 2.67×10^(15)cm^(−3).The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment.
基金supported by the National Natural Science Foundation of China,No.82271399(to XC)the Project of Tianjin Applied Basic and Multiple Support Research,No.21JCZDJC00910(to XC)+4 种基金the Scientific Research Program of Tianjin Education Commission(Natural Science)of China,No.2019ZD034(to QD)the Science&Technology Program of Tianjin for Cultivation of Innovative Talents,No.22JRRCRC00020(to QD)the Tianjin Medical University"Clinical Talent Training 123 Climbing Plan"(to XC)the Tianjin Health Care Elite Prominent Young Doctor Development Program(to XC)the Young and Middle-aged Backbone Innovative Talent Program(to XC)。
文摘Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammato ry reactions.Neutrophil extracellular trap formation occurs through lytic and non-lytic pathways that can be further classified by formation mechanisms.Histones,von Willebrand factor,fibrin,and many other factors participate in the interplay between inflammation and thrombosis.Neuroimmunothrombosis summarizes the intricate interplay between inflammation and thrombosis during neural development and the pathogenesis of neurological diseases,providing cutting-edge insights into post-neurotrauma thrombotic events.The blood-brain barrier defends the brain and spinal cord against external assaults,and neutrophil extracellular trap involvement in blood-brain barrier disruption and immunothrombosis contributes substantially to secondary injuries in neurological diseases.Further research is needed to understand how neutrophil extracellular traps promote blood-brain barrier disruption and immunothrombosis,but recent studies have demonstrated that neutrophil extracellular traps play a crucial role in immunothrombosis,and identified modulators of neuro-immunothrombosis.However,these neurological diseases occur in blood vessels,and the mechanisms are unclear by which neutrophil extracellular traps penetrate the blood-brain barrier to participate in immunothrombosis in traumatic brain injury.This review discusses the role of neutrophil extracellular traps in neuro-immunothrombosis and explores potential therapeutic interventions to modulate neutrophil extracellular traps that may reduce immunothrombosis and improve traumatic brain injury outcomes.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFA1400200 and2021YFA0718701)the National Natural Science Foundation of China(Grant Nos.U2032127,11904322,12104411,12174347)+4 种基金the Natural Science Foundation of Henan province of China(Grant No.202300410356)the China Postdoctoral Science Foundation(Grant Nos.2019M652560 and 2020M682326)the CAS Interdisciplinary Innovation Team(Grant No.JCTD-2019-01)the Postdoctoral Research Grant in Henan Province(Grant No.1902013)the Science Foundation for Highlevel Talents of Wuyi University(Grant No.2021AL019)。
文摘The Cs_(2)NaInCl_(6) double perovskite is one of the most promising lead-free perovskites due to its exceptional stability and straightforward synthesis.However,it faces challenges related to inefficient photoluminescence.Doping and high pressure are employed to tailor the optical properties of Cs_(2)NaInCl_(6).Herein,Sb^(3+)doped Cs_(2)NaInCl_(6)(Sb^(3+):Cs_(2)NaInCl_(6)) was synthesized and it exhibits blue emission with a photoluminescence quantum yield of up to 37.3%.Further,by employing pressure tuning,a blue stable emission under a very wide range from 2.7 GPa to 9.8 GPa is realized in Sb^(3+):Cs_(2)NaInCl_(6).Subsequently,the emission intensity of Sb^(3+):Cs_(2)NaInCl_(6) experiences a significant increase(3.3 times)at 19.0 GPa.It is revealed that the pressure-induced distinct emissions can be attributed to the carrier self-trapping and detrapping between Cs_(2)NaInCl_(6) and Sb^(3+).Notably,the lattice compression in the cubic phase inevitably modifies the band gap of Sb^(3+):Cs_(2)NaInCl_(6).Our findings provide valuable insights into effects of the high pressure in further boosting unique emission characteristics but also offer promising opportunities for development of doped double perovskites with enhanced optical functionalities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104414,12122412,12104464,and 12104413)the China Postdoctoral Science Foundation(Grant No.2021M702955).
文摘The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms.
文摘The four-color three-step selective photoionization process of atom is very important in laser isotope separation technology.The population trapping phenomena and their influences are studied theoretically in monochromatic and non-monochromatic laser fields based on the density matrix theory in this work.Time evolutions of the photoionization properties of the four-color,three-step process are given.The population trapping effects occur intensely in monochromatic excitation,while it gradually turns weak as the laser bandwidth increases.The effects of bandwidth,Rabi frequency,time delay,and frequency detuning on the population trapping effect are investigated in monochromatic and non-monochromatic laser fields.The effects of laser process parameters and atomic parameters on the effective selective photoionization are also discussed.The ionization probability and selectivity factors,as evaluation indexes,are difficult to improve synchronously by adjusting systematic parameters.Besides,the existence of metastable state may play a negative role when its population is low enough.
基金the National Key Research and Development Program of China(Grant No.2022YFA1404104)the National Natural Science Foundation of China(Grant Nos.12025509 and 12104521)Fundamental Research Project of Shenzhen(Grant No.JCYJ20230808105009018).
文摘Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604058)the Guangxi Natural Science Foundation(Grant Nos.2020GXNSFAA297041 and 2023JJA110112)the Innovation Project of Guangxi Graduate Education(Grant No.YCSW2023083)。
文摘We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles.Such tornado waves are named as tornado circular Pearcey beams(TCPBs)and produced by combining two circular Pearcey beams with different radii.Our theoretical exploration delves into various aspects,including the propagation dynamics,energy flux,orbital angular momentum,trapping force,and torque characteristics of TCPBs.The results reveal that the orbital angular momentum,trapping force,and torque of these beams can be finely tuned through the judicious manipulation of their topological charges(l_(1)and l_(2)).Notably,we observe a precise control mechanism wherein the force diminishes with|l_(1)+l_(2)|and|l_(1)-l_(2)|,while the torque exhibits enhancement by decreasing solely with|l_(1)+l_(2)|or increasing with|l_(1)-l_(2)|.These results not only provide quantitative insights into the optical trapping performance of TCPBs but also serve as a valuable reference for the ongoing development of innovative photonic tools.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.62020106014,62175140,12034012,and 92165106)the Natural Science Young Foundation of Shanxi Province(Grant No.202203021212376).
文摘We report a detailed study of magnetically levitated loading of ultracold ^(133)Cs atoms in a dimple trap.The atomic sample was produced in a combined red-detuned optical dipole trap and dimple trap formed by two small waist beams crossing a horizontal plane.The magnetic levitation for the ^(133)Cs atoms forms an effective potential for a large number of atoms in a high spatial density.Dependence of the number of atoms loaded and trapped in the dimple trap on the magnetic field gradient and bias field is in good agreement with the theoretical analysis.This method has been widely used to obtain the Bose–Einstein condensation atoms for many atomic species.
基金Project supported by the National Key R&D Program of China(Grant No.2023YFE0201900)。
文摘Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.
基金Project supported by the Special Project for Research and Development in Key Areas of Guangdong Province,China (Grant No.2020B0303300001)the National Natural Science Foundation of China (Grant Nos.U21A20434,12074346,12074390,11835011,11804375,and 11804308)+2 种基金the Fund from the Key Laboratory of Guangzhou for Quantum Precision Measurement (Grant No.202201000010)the Science and Technology Projects in Guangzhou (Grant No.202201011727)the Nansha Senior Leading Talent Team Technology Project (Grant No.2021CXTD02)。
文摘Cold trapped ions can be excellent sensors for ultra-precision detection of physical quantities,which strongly depends on the measurement situation at hand.The stylus ion trap,formed by two concentric cylinders over a ground plane,holds the promise of relatively simple structure and larger solid angle for optical access and fluorescence collection in comparison with the conventional ion traps.Here we report our fabrication and characterization of the first stylus ion trap constructed in China,aiming for studying quantum optics and sensing weak electric fields in the future.We have observed the stable confinement of the ion in the trapping potential for more than two hours and measured the heating rate of the trap to be dε/dt=7.10±0.13 meV/s by the Doppler recooling method.Our work starts a way to building practical quantum sensors with high efficiency of optical collection and with ultimate goal for contributing to future quantum information technology.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92365208,11934002,and 11920101004)the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)+1 种基金the Science and Technology Major Project of Shanxi(Grant No.202101030201022)the Space Application System of China Manned Space Program。
文摘We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loading and atomic loss.The loading process normally is negligible in the evaporative cooling experiment on the ground, while it is significant in preparation of ultra-cold atoms in the space station. Normally, the atomic loading process is much weaker than the atomic loss process, and the atomic number in the central region of the trap decreases monotonically, as reported in previous research. However, when the atomic loading process is comparable to the atomic loss process, the atomic number in the central region of the trap will initially increase to a maximum value and then slowly decrease, and we have observed the phenomenon first. The increase of atomic number in the central region of the trap shows the presence of the loading process, and this will be significant especially under microgravity conditions. We build a theoretical model to analyze the competitive relationship, which coincides with the experimental results well. Furthermore, we have also given the predicted evolutionary behaviors under different conditions. This research provides a solid foundation for further understanding of the atomic transport process in traps. The analysis of loading process is of significant importance for preparation of ultra-cold atoms in a crossed optical dipole trap under microgravity conditions.
文摘Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%.
基金supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003)the National Natural Science Foundation of China (Grant Nos. 12034011, U23A6004, 12374245,12322409, 92065108, 11974224, and 12022406)+1 种基金the National Key Research and Development Program of China (Grant Nos. 2022YFA1404101 and 2021YFA1401700)the Fund for Shanxi 1331 Project Key Subjects Construction。
文摘We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.