In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial f...In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.展开更多
Based on the homogenous balance method and the trial function method, several trial function methods composed of exponential functions are proposed and applied to nonlinear discrete systems. With the.help of symbolic ...Based on the homogenous balance method and the trial function method, several trial function methods composed of exponential functions are proposed and applied to nonlinear discrete systems. With the.help of symbolic computation system, the new exact solitary wave solutions to discrete nonlinear mKdV lattice equation, discrete nonlinear (2 + 1) dimensional Toda lattice equation, Ablowitz-Ladik-lattice system are constructed.The method is of significance to seek exact solitary wave solutions to other nonlinear discrete systems.展开更多
The 'trial function method' ( TFM for short) and a routine way in finding traveling,wave solutions to some nonlinear partial differential equations( PDE for short), wer explained. Two types of evolution equati...The 'trial function method' ( TFM for short) and a routine way in finding traveling,wave solutions to some nonlinear partial differential equations( PDE for short), wer explained. Two types of evolution equations are studied, one is a generalized Burgers or KdV equation, the other is the Fisher equation with special nonlinear forms of its reaction rate term. One can see that this method is simple, fast and allowing further extension.展开更多
Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational pr...Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.展开更多
Trial function method is applied to solve generalized mKdV (GmKdV for short) equations. It is shownthat GmKdV equations with a real number parameter can be solved directly by this method without a transformation,and m...Trial function method is applied to solve generalized mKdV (GmKdV for short) equations. It is shownthat GmKdV equations with a real number parameter can be solved directly by this method without a transformation,and more new kinds of solitary wave solutions are obtained.展开更多
基金Project supported in part by the National Natural Science Foundation of China(Grant No.11071177)
文摘In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.
基金the National Natural Science Foundation of China (10461006)the Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region (NJZZ07031)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region (200408020103)the Natural Science Research Program of Inner Mongolia Normal University (QN005023)
文摘Based on the homogenous balance method and the trial function method, several trial function methods composed of exponential functions are proposed and applied to nonlinear discrete systems. With the.help of symbolic computation system, the new exact solitary wave solutions to discrete nonlinear mKdV lattice equation, discrete nonlinear (2 + 1) dimensional Toda lattice equation, Ablowitz-Ladik-lattice system are constructed.The method is of significance to seek exact solitary wave solutions to other nonlinear discrete systems.
文摘The 'trial function method' ( TFM for short) and a routine way in finding traveling,wave solutions to some nonlinear partial differential equations( PDE for short), wer explained. Two types of evolution equations are studied, one is a generalized Burgers or KdV equation, the other is the Fisher equation with special nonlinear forms of its reaction rate term. One can see that this method is simple, fast and allowing further extension.
文摘Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.
基金The project supported by National Natural Science Foundation of China under Grant Nos.40045016 and 40175016
文摘Trial function method is applied to solve generalized mKdV (GmKdV for short) equations. It is shownthat GmKdV equations with a real number parameter can be solved directly by this method without a transformation,and more new kinds of solitary wave solutions are obtained.