Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st...Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.展开更多
Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The corr...Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The correlation of the permanent deformations of the MA and the correlation of the deformation developments of the SMA between the two tests are analyzed, respectively. Results show that both the two tests can effectively identify the high temperature performance of mixtures, and the correlation between the final results of the two tests as well as that between the deformation developments of the two tests are excellent with R20.9. In order to further prove the correlation, viscoelastic parameters estimated from the RTT results is used to simulate the rutting development in the HWTT slabs by the finite element method (FEM). Results indicate that the correlation between the two tests is significant with errors less than 10%. It is suitable to predict the rutting development with the viscoelastic parameters obtained from the RTT.展开更多
In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in ...In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in a recently developed true triaxial apparatus with constant minor principal stress σ3 and constant value of intermediate principal stress ratio b=(σ2-σ3)/(σ1-σ3) (al is the vertical stress, and % is the horizontal stress). It is found that the intermediate principal strain, ε2, increases from negative to positive value with the increase of parameter b from zero to unity under a constant minor principal stress. The minor principal strain, ε3, is always negative. This implies that the specimen exhibits an evident anisotropy. The relationship between b and friction angle obtained from the tests is different from that predicted by LADE-DUNCAN and MATSUOKA-NAKAI criteria. Based on the test results, an empirical equation of g(b) that is the shape function of the failure surface on re-plane was presented. The proposed equation is verified to be reasonable by comparing the predicted results using the equation with true triaxial test results of soils, such as coarse-grained soils in this study, sands and gravels in other studies.展开更多
The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure g...The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yuunan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturmed and saturated soils.展开更多
Most studies on liquefaction have addressed homogeneous soil strata using sand or sand with fine content without considering soil stratification.In this study,cyclic triaxial tests were conducted on the stratified san...Most studies on liquefaction have addressed homogeneous soil strata using sand or sand with fine content without considering soil stratification.In this study,cyclic triaxial tests were conducted on the stratified sand specimens embedded with the silt layers to investigate the liquefaction failures and void-redistribution at confining stress of 100 kPa under stress-controlled mode.The loosening of underlying sand mass and hindrance to pore-water flow caused localized bulging at the sand-silt interface.It is observed that at a silt thickness of 0.2H(H is the height of the specimen),nearly 187 load cycles were required to attain liquefaction,which was the highest among all the silt thicknesses with a single silt layer.Therefore,0.2H is assumed as the optimum silt thickness(t_(opt)).The silt was placed at the top,middle and bottom of the specimen to understand the effect of silt layer location.Due to the increase in depth of the silt layer from the top position(capped soil state)to the bottom,the cycles to reach liquefaction(N_(cyc,L))increased 2.18 times.Also,when the number of silt layers increased from single to triple,there was an increase of about 880%in N_(cyc,L).The micro-characterization analysis of the soil specimens indicated silty materials transported in upper sections of the specimen due to the dissipated pore pressure.The main parameters,including thickness(t),location(z),cyclic stress ratio(CSR),number of silt layers(n)and modified relative density(D_(r,m)),performed significantly in governing the lique-faction resistance.For this,a multilinear regression model is developed based on critical parameters for prediction of N_(cyc,L).Furthermore,the developed constitutive model has been validated using the data from the present study and earlier findings.展开更多
In many engineering applications,it is important to determine both effective rock properties and the rock behavior which are representative for the problem’s in situ conditions.For this purpose,rock samples are usual...In many engineering applications,it is important to determine both effective rock properties and the rock behavior which are representative for the problem’s in situ conditions.For this purpose,rock samples are usually extracted from the ground and brought to the laboratory to perform laboratory experiments such as consolidated undrained(CU)triaxial tests.For low permeable geomaterials such as clay shales,core extraction,handling,storage,and specimen preparation can lead to a reduction in the degree of saturation and the effective stress state in the specimen prior to testing remains uncertain.Related changes in structure and the effect of capillary pressure can alter the properties of the specimen and affect the reliability of the test results.A careful testing procedure including back-saturation,consolidation and adequate shearing of the specimen,however,can overcome these issues.Although substantial effort has been devoted during the past decades to the establishment of a testing procedure for low permeable geomaterials,no consistent protocol can be found.With a special focus on CU tests on Opalinus Clay,this study gives a review of the theoretical concepts necessary for planning and validating the results during the individual testing stages(saturation,consolidation,and shearing).The discussed tests protocol is further applied to a series of specimens of Opalinus Clay to illustrate its applicability and highlight the key aspects.展开更多
As a common phenomenon in granular flow, grain segregation plays a great role in affecting the behavior of granular soil by causing a great change of grain-void distribution in granular soil. This paper presents an ex...As a common phenomenon in granular flow, grain segregation plays a great role in affecting the behavior of granular soil by causing a great change of grain-void distribution in granular soil. This paper presents an experimental study on the influence of grain segregation on the behavior of sand, by a number of triaxial tests to interpret the characteristic behavior, friction and dilatancy behavior, excess pore water pressure behavior and critical state behavior of sand incorporating grain segregation. An index-grain segregation index was proposed to quantify grain segregation. Grain segregation affected greatly the characteristic behavior of sand, causing the movement of void ratio-dilatancy relation of sand towards the increase of void ratio and dilatancy of sand. In the drained tests, the mobilized friction angle of sand showed a decrease followed by an increase but the mobilized dilatancy angle of sand increased, with increasing grain segregation index. An increase in grain segregation index impaired the basic friction of sand. In the undrained tests, the mobilized friction angle of sand showed an increase followed by a decrease with increasing grain segregation index. However, grain segregation caused an increase of the mobilized dilatancy of sand followed by a different development. An increase in grain segregation resulted in a higher summit of the dilatancy of sand but with a faster decrease along axial strain. In the q-p′ plane, grain segregation caused a reciprocating rotation of the dilatancy line and failure line of sand. Grain segregation resulted in enhancement of the peak-state dilatancy of sand, affecting greatly peakstate friction angle and peak-state basic friction angle of sand as well as the normalized excess pore water pressure. The excess friction angle of sand showed an increase followed by a decrease in the drained tests but increased linearly in the undrained tests, with increasing grain segregation index. The excess friction angle-over-maximum dilatancy angle of sand decreased in up convexity while increasing grain segregation index. Grain segregation resulted in rotation and translation of the critical state line of sand in the e-p′α=0.7 plane. However, in the q-p′ plane, the critical state line of sand showed an anticlockwise rotation followed by a clockwise rotation with increasing grain segregation index.展开更多
Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric...Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric stress amplitudes.The samples were subjected to 10,000 loading-unloading cycles with a frequency of 8 Hz.At each level of confining pressure,the applied cyclic deviatoric stress amplitude was increased incrementally until excessive deformation of the jointed rock specimen was observed.Analysis of the test results indicated that there existed a critical cyclic deviatoric stress amplitude(i.e.critical dynamic deviatoric stress)beyond which the jointed rock specimens yielded.The measured critical dynamic deviatoric stress was less than the corresponding static deviatoric stress.At cyclic deviatoric stress amplitudes less than the critical dynamic deviatoric stress,minor cumulative residual axial strains were observed,resulting in hysteretic damping.However,for cyclic deviatoric stresses beyond the critical dynamic deviatoric stress,the plastic strains increased promptly,and the resilient moduli degraded rapidly during the initial loading cycles.Cyclic triaxial test results showed that at higher confining pressures,the ultimate residual axial strain attained by the jointed rock specimen decreased,the steadystate dissipated energy density and steady-state damping ratio per load cycle decreased,while steadystate resilient moduli increased.展开更多
It is feasible to study the mechanical characteristics of coarse-grained soil by simulated granular materials such as glass beads.In this paper,3 mm diameter glass beads are used to conduct drained and undrained triax...It is feasible to study the mechanical characteristics of coarse-grained soil by simulated granular materials such as glass beads.In this paper,3 mm diameter glass beads are used to conduct drained and undrained triaxial tests under different confining pressures to explore their strength,deformation and critical state characteristics.Specifically,the influence of drainage and confining pressure on the stick-slip phenomenon of glass beads is reported.The experimental findings from triaxial tests show that the stress-strain relationship of glass beads softens when the confining pressure is high.Under the undrained condition,the initial modulus increases with the increase in the confining pressure.In contrast,it is not significantly affected by the confining pressure in the drained condition.It is quite evident that the glass beads hardly contract during the shearing process,and their stress path is approximately a segmented straight line.The slope of the critical state line under the undrained condition is greater than that under the drained condition,and the friction angle of the glass beads under the undrained and drained conditions is calculated to be 28.1and 29.5,respectively.The phenomenon of stick-slip has been depicted for the different test conditions,and the stick-slip amplitude linearly increases with the confining pressure,especially in the undrained condition.It is also found that the maximum energy released from the phenomenon of stick-slip increases linearly with the confining pressure.展开更多
Applying MTS rock stiffness test machine, tests under triaxial condition were carried out for rockmass under loading and unloading. By measuring and analyzing such mechanical properties as stress, strain, elastic modu...Applying MTS rock stiffness test machine, tests under triaxial condition were carried out for rockmass under loading and unloading. By measuring and analyzing such mechanical properties as stress, strain, elastic modulus, Poisson ratio and elastic wave velocity during the whole test process, the differences of mechanical characteristics under loading and unloading conditions were revealed, to provide some useful references for excavation.展开更多
It is now recognized that many geomaterials have nonlinear failure envelopes. This non-linearity is most marked at lower stress levels, the failure envelope being of quasi-parabolic shape. It is not easy to calibrate ...It is now recognized that many geomaterials have nonlinear failure envelopes. This non-linearity is most marked at lower stress levels, the failure envelope being of quasi-parabolic shape. It is not easy to calibrate these nonlinear failure envelopes from triaxial test data. Currently only the power-type failure envelope has been studied with an established formal procedure for its determination from triaxial test data. In this paper, a simplified procedure is evolved for the development of four different types of nonlinear envelopes. These are of invaluable assistance in the evaluation of true factors of safety in problems of slope stability and correct computation of lateral earth pressure and bearing capacity. The use of the Mohr-Coulomb failure envelopes leads to an overestimation of the factors of safety and other geotechnical quantities.展开更多
Based on the dynamic triaxial test system and using the fitted wave of the Wenchuan earthquake and 1 Hz constant amplitude sinusoid,the paper compares the results of tests on undisturbed loess samples under different ...Based on the dynamic triaxial test system and using the fitted wave of the Wenchuan earthquake and 1 Hz constant amplitude sinusoid,the paper compares the results of tests on undisturbed loess samples under different loads and vibration modes but under same saturated conditions.Results of the comparative experiment show:The stress-strain curves have a similar trend under random seismic loading and constant amplitude sinusoidal loading,but the random seismic loading is more sensitive to failure strength of the undisturbed loess samples under the same stress.展开更多
Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construc...Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construction and water impounding process of a rock fill dam. The stress and strain relationships induced by the different loading methods were investigated. A remarkable stress-induced anisotropy under complex stress state was observed. Contrary to popular assumptions in traditional numerical analysis and constitutive models, it was found that different elastic modulus and Poisson ratio exist in different principal directions in rock fill dams. From the testing results, an anisotropic constitutive model based on Duncan-Chang nonlinear model is presented to overcome the limitations of axi-symmetric assumptions in conventional triaxial experiments and constitutive models. Both models were then applied in FEM analysis of an under-construction earth core high rock soil filled dam with the focus on hydraulic fracturing. The study reveals the major biases that exist when numerical analysis and constitutive models do not give serious consideration to the intermediate principal stress and anisotropy effects in soil rock built structures.展开更多
An experimental study is carried out to investigate the static liquefaction of sand. For this purpose, Babolsar sand with its liquefiable parameters such as soil properties and high seismic level of underground water ...An experimental study is carried out to investigate the static liquefaction of sand. For this purpose, Babolsar sand with its liquefiable parameters such as soil properties and high seismic level of underground water are investigated using static compression drained and un-drained tri-axial tests under isotropically and anisotropically conditions. Also, the data results of this sand are compared with those of the previous studies on soil case history. The study results indicate that Babolsar sand can experience the whole possible states of liquefaction soil, i.e. flow failure, limited and dilation behavior.展开更多
The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the c...The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stress σ_(n) and lateral stressσ_(p)to investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσ_(n)and σ_(p),the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσ_(n),while they first increase and then gradually decrease asσ_(p)increases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσ_(n),but shows no significant change withσ_(p).Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion c_(jp),friction angleφ_(jp),and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσ_(n)andσ_(p),G first rapidly decreases and then tends to stabilize;cjp,φ_(jp),andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.展开更多
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
Asphalt mixture is the most widely used pavement material all over the world. In China, more than 90% of service expressways are asphalt pavement. However, current asphalt pavement design method still has irrationalit...Asphalt mixture is the most widely used pavement material all over the world. In China, more than 90% of service expressways are asphalt pavement. However, current asphalt pavement design method still has irrationality. Even though maximum tensile stress theory is used as failure criterion, pavement structure under the effects of wheel load is in three-dimensional complex stress state. Obviously, one-dimensional strength theory cannot reflect the failure characteristics and the resistance of pavement structure. So it is necessary to study the failure criterion of asphalt mixture under three-dimensional com- plex stress state. Due to limitations of test equipment, there are almost no studies in related area. Under this background, this paper develops a new triaxial test method, ac- cording to the investigation of strength characteristics of asphalt mixture under complex stress state through plane isobaric/axial tensile test, plane isobaric/axial compression test, plane tensile and compression/axial tensile test, to reveal the general rules of asphalt mixture's strength failure. The failure mode is divided into three types: tensile failure, shear failure and rheological failure. The tensile meridian and compression meridian in the stress space and strength envelope in the π plane where hydrostatic pressure is greater than zero are obtained, and the failure criterion of asphalt mixture under complex stress state is established, providing theoretical method and scientific basis for structure design as well as strength check of asphalt pavement under three-dimensional stress state.展开更多
Unbound granular materials(UGMs)are widely used as a base or a subbase in pavement construction.They are generally well graded and exhibit a higher peak strength than that of conventional cohesionless granular materia...Unbound granular materials(UGMs)are widely used as a base or a subbase in pavement construction.They are generally well graded and exhibit a higher peak strength than that of conventional cohesionless granular materials.By using a simplified version of granular solid hydrodynamics(GSH),a set of GSH material constants is determined for a UGM material.The deviatoric stress and volumetric strain caused by triaxial compression are calculated and then compared with experimental data.The results indicate that the GSH theory is able to describe such a special type of granular materials.展开更多
In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled ...In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled cylinder specimens on a TATW-2000 rock servo-controlled triaxial testing machine in a laboratory. The specimens were made of limestone material, taken from Tongshan county, Xuzhou city, Jiangsu province, China. In our experiments, rock deformation and failure behavior was studied through loading and unloading of inner hole pressure of thick-walled cylinder specimens. At first, the axial stress, confining pressure and inner pressure were increased simultaneously to a specified designed state of stress. Then, keeping the axial stress and confining pressure stable, the pressure on the inner hole was decreased until the specimen was fractured. When the inner pressure was released completely but the specimen did not fracture, the confining pressure was decreased subsequently until complete failure occurred. Our experimental results suggest that traces of major circular ringlike fractures with a number of radial cracks often appear in thick cylinder walls. This type of ringlike failure phenomenon, similar to intermittent zonal fracturing characteristics of deep exploitation, has, so far, not been published. Our experimental results show that rock deformation and failure behavior of thick-walled limestone cylinders vary under different stress paths between loading and unloading. Tensile failure and orderly failure surfaces occur under unloading conditions while irregular damaged rock blocks are produced during loading failure. This type of triaxial unloading experiment provides for new research methodology and approach for thorough investigations on intermittent zonal fracturing in deep underground excavations.展开更多
High geothermal temperatures appear to be unfavorable for the construction of tunnels in slate rocks with high overburden. To investigate the mechanical characteristics of slates at various levels of geothermal temper...High geothermal temperatures appear to be unfavorable for the construction of tunnels in slate rocks with high overburden. To investigate the mechanical characteristics of slates at various levels of geothermal temperature, conventional triaxial compression tests at different levels of confining stress were carried out at 4 different temperatures from 20℃ to 120℃. The obtained results show high confining pressures weaken the thermal effects on rock mechanical characteristics while higher temperatures enhance the effect of confining pressure.At higher levels of confining stress the thermal effects on the rock strength characteristics decrease. The higher the temperature, the larger is the effect of confining pressure on the mechanical characteristics of the slate. Increase of temperature leads to a decrease of the peak strength but increases the deformability and ductility of the slate, the thermo effect on the peak strength and Poisson's ratio is larger than on the elastic modulus. Higher temperatures reduce the shear strength of slate, the decrease is mainly caused by a decrease of the cohesion. In general, the slate samples fail in shear failure.展开更多
文摘Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.
基金The Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry (No.6821001005)
文摘Both the repeated triaxial test (RTT) and the Hamburg wheel tracking test (HWTT) are adopted to evaluate the high temperature performance of the stone mastic asphalt (SMA) and the mastic asphalt (MA). The correlation of the permanent deformations of the MA and the correlation of the deformation developments of the SMA between the two tests are analyzed, respectively. Results show that both the two tests can effectively identify the high temperature performance of mixtures, and the correlation between the final results of the two tests as well as that between the deformation developments of the two tests are excellent with R20.9. In order to further prove the correlation, viscoelastic parameters estimated from the RTT results is used to simulate the rutting development in the HWTT slabs by the finite element method (FEM). Results indicate that the correlation between the two tests is significant with errors less than 10%. It is suitable to predict the rutting development with the viscoelastic parameters obtained from the RTT.
基金Project(50639050) supported by the National Natural Science Foundation of China and Er-Tan Hydraulicpower Limited CompanyProject(50579014) supported by the National Natural Science Foundation of China+3 种基金Project(09KJD560003) supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of ChinaProject(BK2007582) supported by Jiangsu Provincial Natural Science Foundation of ChinaProject(20070294002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(GH200904) supported by Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University,China
文摘In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in a recently developed true triaxial apparatus with constant minor principal stress σ3 and constant value of intermediate principal stress ratio b=(σ2-σ3)/(σ1-σ3) (al is the vertical stress, and % is the horizontal stress). It is found that the intermediate principal strain, ε2, increases from negative to positive value with the increase of parameter b from zero to unity under a constant minor principal stress. The minor principal strain, ε3, is always negative. This implies that the specimen exhibits an evident anisotropy. The relationship between b and friction angle obtained from the tests is different from that predicted by LADE-DUNCAN and MATSUOKA-NAKAI criteria. Based on the test results, an empirical equation of g(b) that is the shape function of the failure surface on re-plane was presented. The proposed equation is verified to be reasonable by comparing the predicted results using the equation with true triaxial test results of soils, such as coarse-grained soils in this study, sands and gravels in other studies.
基金Project(51068002) supported by the National Natural Science Foundation of ChinaProject(10-046-14-1) supported by Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering,China
文摘The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yuunan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturmed and saturated soils.
基金performed at Geotechnical engineering lab,Indian Institute of Technology,Roorkee,India.Ministry of Human Resource Development,Government of India,New Delhi supported this work(Grant No.MHR 002).
文摘Most studies on liquefaction have addressed homogeneous soil strata using sand or sand with fine content without considering soil stratification.In this study,cyclic triaxial tests were conducted on the stratified sand specimens embedded with the silt layers to investigate the liquefaction failures and void-redistribution at confining stress of 100 kPa under stress-controlled mode.The loosening of underlying sand mass and hindrance to pore-water flow caused localized bulging at the sand-silt interface.It is observed that at a silt thickness of 0.2H(H is the height of the specimen),nearly 187 load cycles were required to attain liquefaction,which was the highest among all the silt thicknesses with a single silt layer.Therefore,0.2H is assumed as the optimum silt thickness(t_(opt)).The silt was placed at the top,middle and bottom of the specimen to understand the effect of silt layer location.Due to the increase in depth of the silt layer from the top position(capped soil state)to the bottom,the cycles to reach liquefaction(N_(cyc,L))increased 2.18 times.Also,when the number of silt layers increased from single to triple,there was an increase of about 880%in N_(cyc,L).The micro-characterization analysis of the soil specimens indicated silty materials transported in upper sections of the specimen due to the dissipated pore pressure.The main parameters,including thickness(t),location(z),cyclic stress ratio(CSR),number of silt layers(n)and modified relative density(D_(r,m)),performed significantly in governing the lique-faction resistance.For this,a multilinear regression model is developed based on critical parameters for prediction of N_(cyc,L).Furthermore,the developed constitutive model has been validated using the data from the present study and earlier findings.
基金funded by the Swiss Federal Nuclear Safety Inspectorate ENSI (Grant no. H-100897)
文摘In many engineering applications,it is important to determine both effective rock properties and the rock behavior which are representative for the problem’s in situ conditions.For this purpose,rock samples are usually extracted from the ground and brought to the laboratory to perform laboratory experiments such as consolidated undrained(CU)triaxial tests.For low permeable geomaterials such as clay shales,core extraction,handling,storage,and specimen preparation can lead to a reduction in the degree of saturation and the effective stress state in the specimen prior to testing remains uncertain.Related changes in structure and the effect of capillary pressure can alter the properties of the specimen and affect the reliability of the test results.A careful testing procedure including back-saturation,consolidation and adequate shearing of the specimen,however,can overcome these issues.Although substantial effort has been devoted during the past decades to the establishment of a testing procedure for low permeable geomaterials,no consistent protocol can be found.With a special focus on CU tests on Opalinus Clay,this study gives a review of the theoretical concepts necessary for planning and validating the results during the individual testing stages(saturation,consolidation,and shearing).The discussed tests protocol is further applied to a series of specimens of Opalinus Clay to illustrate its applicability and highlight the key aspects.
基金supported by the National Natural Science Foundation of China (Grant no.41807268)the Major Program of National Natural Science Foundation of China (Grant no.41790432)the Youth Innovation Promotion Association of the Chinese Academy of Sciences,China (Grant no.2018408)。
文摘As a common phenomenon in granular flow, grain segregation plays a great role in affecting the behavior of granular soil by causing a great change of grain-void distribution in granular soil. This paper presents an experimental study on the influence of grain segregation on the behavior of sand, by a number of triaxial tests to interpret the characteristic behavior, friction and dilatancy behavior, excess pore water pressure behavior and critical state behavior of sand incorporating grain segregation. An index-grain segregation index was proposed to quantify grain segregation. Grain segregation affected greatly the characteristic behavior of sand, causing the movement of void ratio-dilatancy relation of sand towards the increase of void ratio and dilatancy of sand. In the drained tests, the mobilized friction angle of sand showed a decrease followed by an increase but the mobilized dilatancy angle of sand increased, with increasing grain segregation index. An increase in grain segregation index impaired the basic friction of sand. In the undrained tests, the mobilized friction angle of sand showed an increase followed by a decrease with increasing grain segregation index. However, grain segregation caused an increase of the mobilized dilatancy of sand followed by a different development. An increase in grain segregation resulted in a higher summit of the dilatancy of sand but with a faster decrease along axial strain. In the q-p′ plane, grain segregation caused a reciprocating rotation of the dilatancy line and failure line of sand. Grain segregation resulted in enhancement of the peak-state dilatancy of sand, affecting greatly peakstate friction angle and peak-state basic friction angle of sand as well as the normalized excess pore water pressure. The excess friction angle of sand showed an increase followed by a decrease in the drained tests but increased linearly in the undrained tests, with increasing grain segregation index. The excess friction angle-over-maximum dilatancy angle of sand decreased in up convexity while increasing grain segregation index. Grain segregation resulted in rotation and translation of the critical state line of sand in the e-p′α=0.7 plane. However, in the q-p′ plane, the critical state line of sand showed an anticlockwise rotation followed by a clockwise rotation with increasing grain segregation index.
文摘Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric stress amplitudes.The samples were subjected to 10,000 loading-unloading cycles with a frequency of 8 Hz.At each level of confining pressure,the applied cyclic deviatoric stress amplitude was increased incrementally until excessive deformation of the jointed rock specimen was observed.Analysis of the test results indicated that there existed a critical cyclic deviatoric stress amplitude(i.e.critical dynamic deviatoric stress)beyond which the jointed rock specimens yielded.The measured critical dynamic deviatoric stress was less than the corresponding static deviatoric stress.At cyclic deviatoric stress amplitudes less than the critical dynamic deviatoric stress,minor cumulative residual axial strains were observed,resulting in hysteretic damping.However,for cyclic deviatoric stresses beyond the critical dynamic deviatoric stress,the plastic strains increased promptly,and the resilient moduli degraded rapidly during the initial loading cycles.Cyclic triaxial test results showed that at higher confining pressures,the ultimate residual axial strain attained by the jointed rock specimen decreased,the steadystate dissipated energy density and steady-state damping ratio per load cycle decreased,while steadystate resilient moduli increased.
基金This work was financially supported by the National Natural Science Foundation of China(No.1216020092)the Projects for Leading Talents of Science and Technology Innovation of Ningxia(No.KJT2019001)the innovation team for multiscale mechanics and its engineering applications of Ningxia Hui Autonomous Region,and these supports are gratefully acknowledged.
文摘It is feasible to study the mechanical characteristics of coarse-grained soil by simulated granular materials such as glass beads.In this paper,3 mm diameter glass beads are used to conduct drained and undrained triaxial tests under different confining pressures to explore their strength,deformation and critical state characteristics.Specifically,the influence of drainage and confining pressure on the stick-slip phenomenon of glass beads is reported.The experimental findings from triaxial tests show that the stress-strain relationship of glass beads softens when the confining pressure is high.Under the undrained condition,the initial modulus increases with the increase in the confining pressure.In contrast,it is not significantly affected by the confining pressure in the drained condition.It is quite evident that the glass beads hardly contract during the shearing process,and their stress path is approximately a segmented straight line.The slope of the critical state line under the undrained condition is greater than that under the drained condition,and the friction angle of the glass beads under the undrained and drained conditions is calculated to be 28.1and 29.5,respectively.The phenomenon of stick-slip has been depicted for the different test conditions,and the stick-slip amplitude linearly increases with the confining pressure,especially in the undrained condition.It is also found that the maximum energy released from the phenomenon of stick-slip increases linearly with the confining pressure.
文摘Applying MTS rock stiffness test machine, tests under triaxial condition were carried out for rockmass under loading and unloading. By measuring and analyzing such mechanical properties as stress, strain, elastic modulus, Poisson ratio and elastic wave velocity during the whole test process, the differences of mechanical characteristics under loading and unloading conditions were revealed, to provide some useful references for excavation.
文摘It is now recognized that many geomaterials have nonlinear failure envelopes. This non-linearity is most marked at lower stress levels, the failure envelope being of quasi-parabolic shape. It is not easy to calibrate these nonlinear failure envelopes from triaxial test data. Currently only the power-type failure envelope has been studied with an established formal procedure for its determination from triaxial test data. In this paper, a simplified procedure is evolved for the development of four different types of nonlinear envelopes. These are of invaluable assistance in the evaluation of true factors of safety in problems of slope stability and correct computation of lateral earth pressure and bearing capacity. The use of the Mohr-Coulomb failure envelopes leads to an overestimation of the factors of safety and other geotechnical quantities.
基金sponsored by the Earthquake Professional Special Program of China Earthquake Administration (2008419031)
文摘Based on the dynamic triaxial test system and using the fitted wave of the Wenchuan earthquake and 1 Hz constant amplitude sinusoid,the paper compares the results of tests on undisturbed loess samples under different loads and vibration modes but under same saturated conditions.Results of the comparative experiment show:The stress-strain curves have a similar trend under random seismic loading and constant amplitude sinusoidal loading,but the random seismic loading is more sensitive to failure strength of the undisturbed loess samples under the same stress.
基金Project(50809023)supported by the National Natural Science Foundation of ChinaProject(2015B17714)supported by the Fundamental Research Funds for Central Universities,China
文摘Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construction and water impounding process of a rock fill dam. The stress and strain relationships induced by the different loading methods were investigated. A remarkable stress-induced anisotropy under complex stress state was observed. Contrary to popular assumptions in traditional numerical analysis and constitutive models, it was found that different elastic modulus and Poisson ratio exist in different principal directions in rock fill dams. From the testing results, an anisotropic constitutive model based on Duncan-Chang nonlinear model is presented to overcome the limitations of axi-symmetric assumptions in conventional triaxial experiments and constitutive models. Both models were then applied in FEM analysis of an under-construction earth core high rock soil filled dam with the focus on hydraulic fracturing. The study reveals the major biases that exist when numerical analysis and constitutive models do not give serious consideration to the intermediate principal stress and anisotropy effects in soil rock built structures.
文摘An experimental study is carried out to investigate the static liquefaction of sand. For this purpose, Babolsar sand with its liquefiable parameters such as soil properties and high seismic level of underground water are investigated using static compression drained and un-drained tri-axial tests under isotropically and anisotropically conditions. Also, the data results of this sand are compared with those of the previous studies on soil case history. The study results indicate that Babolsar sand can experience the whole possible states of liquefaction soil, i.e. flow failure, limited and dilation behavior.
基金the National Natural Science Foundation of China(Nos.52469019,52109119,and 52274145)the Chinese Postdoctoral Science Fund Project(No.2022M723408)+1 种基金the Major Project of Guangxi Science and Technology(No.AA23023016)the Technology Project of China Power Engineering Consulting Group Co.,Ltd.(No.DG2-T01-2023)。
文摘The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stress σ_(n) and lateral stressσ_(p)to investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσ_(n)and σ_(p),the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσ_(n),while they first increase and then gradually decrease asσ_(p)increases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσ_(n),but shows no significant change withσ_(p).Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion c_(jp),friction angleφ_(jp),and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσ_(n)andσ_(p),G first rapidly decreases and then tends to stabilize;cjp,φ_(jp),andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.
基金supported by the Key Program of National Natural Science Foundation of China (51038002)National Natural Science Foundation of China (50808026, 11072041, 51208066)+1 种基金supported by Open Fund of the Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology (kfj130103)the Planned Science and Technology Project of Hunan Province (2014TT2032)
文摘Asphalt mixture is the most widely used pavement material all over the world. In China, more than 90% of service expressways are asphalt pavement. However, current asphalt pavement design method still has irrationality. Even though maximum tensile stress theory is used as failure criterion, pavement structure under the effects of wheel load is in three-dimensional complex stress state. Obviously, one-dimensional strength theory cannot reflect the failure characteristics and the resistance of pavement structure. So it is necessary to study the failure criterion of asphalt mixture under three-dimensional com- plex stress state. Due to limitations of test equipment, there are almost no studies in related area. Under this background, this paper develops a new triaxial test method, ac- cording to the investigation of strength characteristics of asphalt mixture under complex stress state through plane isobaric/axial tensile test, plane isobaric/axial compression test, plane tensile and compression/axial tensile test, to reveal the general rules of asphalt mixture's strength failure. The failure mode is divided into three types: tensile failure, shear failure and rheological failure. The tensile meridian and compression meridian in the stress space and strength envelope in the π plane where hydrostatic pressure is greater than zero are obtained, and the failure criterion of asphalt mixture under complex stress state is established, providing theoretical method and scientific basis for structure design as well as strength check of asphalt pavement under three-dimensional stress state.
基金The authors thank Prof.Yimin Jiang for scientific guidance and discussions.This work was supported by the National Key Basic Research Program of China(No.2010CB731504)the research funding from the State Key Laboratory of Hydroscience and Engineering,Tsinghua University(No.2010-TC-1).
文摘Unbound granular materials(UGMs)are widely used as a base or a subbase in pavement construction.They are generally well graded and exhibit a higher peak strength than that of conventional cohesionless granular materials.By using a simplified version of granular solid hydrodynamics(GSH),a set of GSH material constants is determined for a UGM material.The deviatoric stress and volumetric strain caused by triaxial compression are calculated and then compared with experimental data.The results indicate that the GSH theory is able to describe such a special type of granular materials.
基金supported by the National Natural Science Foundation of China (Nos.50804046, 50490273 and 50774082)the Scientific Research Fund for Youths of CUMT (No. 0B080240)
文摘In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled cylinder specimens on a TATW-2000 rock servo-controlled triaxial testing machine in a laboratory. The specimens were made of limestone material, taken from Tongshan county, Xuzhou city, Jiangsu province, China. In our experiments, rock deformation and failure behavior was studied through loading and unloading of inner hole pressure of thick-walled cylinder specimens. At first, the axial stress, confining pressure and inner pressure were increased simultaneously to a specified designed state of stress. Then, keeping the axial stress and confining pressure stable, the pressure on the inner hole was decreased until the specimen was fractured. When the inner pressure was released completely but the specimen did not fracture, the confining pressure was decreased subsequently until complete failure occurred. Our experimental results suggest that traces of major circular ringlike fractures with a number of radial cracks often appear in thick cylinder walls. This type of ringlike failure phenomenon, similar to intermittent zonal fracturing characteristics of deep exploitation, has, so far, not been published. Our experimental results show that rock deformation and failure behavior of thick-walled limestone cylinders vary under different stress paths between loading and unloading. Tensile failure and orderly failure surfaces occur under unloading conditions while irregular damaged rock blocks are produced during loading failure. This type of triaxial unloading experiment provides for new research methodology and approach for thorough investigations on intermittent zonal fracturing in deep underground excavations.
基金supported by National Natural Science Foundation of China(Grant No.41230635)Projects of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2013Z004)+1 种基金The Cultivating programme of middle-aged backbone teachers of Chengdu University of Technology(Grant No.JXGG201703)Key Projects of Education Department of Sichuan Province(Grant No.16ZA0095)
文摘High geothermal temperatures appear to be unfavorable for the construction of tunnels in slate rocks with high overburden. To investigate the mechanical characteristics of slates at various levels of geothermal temperature, conventional triaxial compression tests at different levels of confining stress were carried out at 4 different temperatures from 20℃ to 120℃. The obtained results show high confining pressures weaken the thermal effects on rock mechanical characteristics while higher temperatures enhance the effect of confining pressure.At higher levels of confining stress the thermal effects on the rock strength characteristics decrease. The higher the temperature, the larger is the effect of confining pressure on the mechanical characteristics of the slate. Increase of temperature leads to a decrease of the peak strength but increases the deformability and ductility of the slate, the thermo effect on the peak strength and Poisson's ratio is larger than on the elastic modulus. Higher temperatures reduce the shear strength of slate, the decrease is mainly caused by a decrease of the cohesion. In general, the slate samples fail in shear failure.