Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated usi...Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V.展开更多
Cu matrix composite reinforced with 10%(volume fraction) carbon nanotubes(CNTs/Cu) and pure Cu bulk were prepared by powder metallurgy techniques under the same consolidation processing condition.The effect of ele...Cu matrix composite reinforced with 10%(volume fraction) carbon nanotubes(CNTs/Cu) and pure Cu bulk were prepared by powder metallurgy techniques under the same consolidation processing condition.The effect of electrical current on tribological property of the materials was investigated by using a pin-on-disk friction and wear tester.The results show that the friction coefficient and wear rate of CNTs/Cu composite as well as those of pure Cu bulk increase with increasing the electrical current without exception,and the effect of electrical current is more obvious on tribological property of pure Cu bulk than on that of CNTs/Cu composite;the dominant wear mechanisms are arc erosion wear and plastic flow deformation,respectively;CNTs can improve tribological property of Cu matrix composites with electrical current.展开更多
A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiB...A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.展开更多
Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,t...Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data.展开更多
Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis ...Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis using fused filament fabrication and investigated the effects of printing orientation on its tribological properties using a pin-on-plate tribometer in 25% newborn calf serum.An ultrahigh molecular weight polyethylene transfer film is formed on the surface of PEEK due to the mechanical capture of wear debris by the 3D-printed groove morphology,which is significantly impacted by the printing orientation of PEEK.When the printing orientation was parallel to the sliding direction of friction,the number and size of the transfer film increased due to higher steady stress.This transfer film protected the matrix and reduced the friction coefficient and wear rate of friction pairs by 39.13%and 74.33%,respectively.Furthermore,our findings provide a novel perspective regarding the role of printing orientation in designing knee prostheses,facilitating its practical applications.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
Cu nanoparticles surface-modified by dioctylamine dithiocarbamate (DTC8) were synthesized using a two-phase extraction route. The size, morphology and structure of resultant surface-capped Cu nanoparticles (coded a...Cu nanoparticles surface-modified by dioctylamine dithiocarbamate (DTC8) were synthesized using a two-phase extraction route. The size, morphology and structure of resultant surface-capped Cu nanoparticles (coded as DTC8-Cu) were analyzed by means of X-ray diffraction, transmission electron microscopy and infrared spectrometry. The tribological behavior of DTC8-Cu as an additive in liquid paraffin was evaluated with a four-ball machine, and the surface topography of the wear scar was also examined by means of scanning electron microscopy. Results show that Cu nanoparticles modified by DTC8 have a small particle size and a narrow size distribution. Besides, DTC8-Cu as an additive in liquid paraffin has excellent antiwear ability, due to the deposition of nano-Cu with low melting point on worn steel surface leading to the formation of a self-repairing protective layer thereon.展开更多
In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and Ti...In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.展开更多
Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites fi...Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites filled with carbon fibers treated with different treatment methods. Tribological properties of the PTFE composites, sliding against GCr15 steel under water-lubricated condition, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the composites were examined using scanning electron microscopy. Experimental results reveal that RE treatment is superior to air oxidation in promoting tribological properties of CF reinforced PTFE (CF/PTFE) composite. The friction and wear properties of PTFE composite filled with RE treated CF are the best of the PTFE composites. RE treatment is more effective than air oxidation to improve the tribological properties of CF/PTFE composite owing to the effective improvement of interfacial adhesion between carbon fibers and PTFE matrix.展开更多
The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Exper...The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.展开更多
Lanthanum hydroxide/graphene oxide nanocomposites(La(OH)3/GO)modified by octadecylamine(OCA),oleylamine(OLA),and polyvinylpyrrolidone(PVP)were prepared,respectively,as the base oil additives.The dispersion stability o...Lanthanum hydroxide/graphene oxide nanocomposites(La(OH)3/GO)modified by octadecylamine(OCA),oleylamine(OLA),and polyvinylpyrrolidone(PVP)were prepared,respectively,as the base oil additives.The dispersion stability of different modified La(OH)3/GO in base oil was studied by means of centrifugation.The tribological properties of oleophilic La(OH)3/GO in base oil were investigated using an UMT ball-disc tribometer.The micro-morphology and chemical composition of the worn surface were characterized by 3 D laser microscope,SEM,EDS,XPS,and Raman spectroscopy,respectively.The wettability performance of the worn surface was also studied based on the contact angle measurements.The test results showed that the OLA-La(OH)3/GO nanocomposites had good dispersion stability in base oil.The anti-wear performance of base oil was improved significantly by the addition of OLA-La(OH)3/GO nanocomposites.The characterizations of worn surface showed that the OLA-La(OH)3/GO nanocomposites could form the metal oxide and graphene protective films effectively on the friction interface and thus increased the oil wettability of the worn surface,thereby resulting in an improved wear resistance.展开更多
This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their appl...This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their applications as high-temperature wear resistant mechanical parts.Additionally,the wear mechanism of alloys is evaluated.The tribological properties of alloys are systematically studied by using a ball-on-disc tribometer at 10 N and 0.20 m/s from RT to 800°C sliding against Si3N4 ceramic ball.The boron element greatly improves the wear resistance of specimens as compared with that of unreinforced specimen.The friction coefficients of specimens decrease with increasing of testing temperature.The wear rates of Fe-Cr-B alloys decrease firstly and then raise with the increase of boron content.The specific wear rates of specimens with boron are 1/10 of the unreinforced specimen.Fe-21wt%Cr-7wt%B keeps the best tribological properties at high temperature.展开更多
A novel method, pulsed laser arc deposition combining the advantages of pulsed laser deposition and cathode vacuum arc techniques, was used to deposit the diamond-like carbon (DLC) nanofilms with different thickness...A novel method, pulsed laser arc deposition combining the advantages of pulsed laser deposition and cathode vacuum arc techniques, was used to deposit the diamond-like carbon (DLC) nanofilms with different thicknesses. Spectroscopic ellipsometer, Auger electron spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and multi-functional friction and wear tester were employed to investigate the physical and tribological properties of the deposited films. The results show that the deposited films are amorphous and the sp2, sp3 and C-O bonds at the top surface of the films are identified. The Raman peak intensity and surface roughness increase with increasing film thickness. Friction coefficients are about 0.1, 0.15, 0.18, when the film thicknesses are in the range of 17-21 nm, 30-57 nm, 67-123 nm, respectively. This is attributed to the united effects of substrate and surface roughness. The wear mechanism of DLC films is mainly abrasive wear when film thickness is in the range of 17-41 nm, while it transforms to abrasive and adhesive wear, when the film thickness lies between 72 and 123 nm.展开更多
γ-mercapto-propyl trimethoxysilane (MPTS) and γ-methacryloxy propyltrimethoxysilane (MPTES) were self-assembled on a hy- droxylated glass substrate to form a two-dimensional organic monolayer (MPTS-MPTES SAM)....γ-mercapto-propyl trimethoxysilane (MPTS) and γ-methacryloxy propyltrimethoxysilane (MPTES) were self-assembled on a hy- droxylated glass substrate to form a two-dimensional organic monolayer (MPTS-MPTES SAM). The terminal thiol groups (-SH) in the MPTS-MPTES SAM were in-situ oxidized into sulfonic acid groups (-SO3H) to endow the film with good chemisorption ability. Then rare earth (RE) (lanthanum-based) composite thin films were prepared by self-assembly technique based on the as-prepared SAM, taking advantage of the chemisorption ability of the sulfonic acid groups. Automatic force microscope (AFM), X-ray photoelectron spectrometry (XPS), contact angle measurement and ellipsometer were used to characterize MPTS-MPTES/RE composite films. The macrofriction and wear behaviors of the films sliding against an AISI-52100 steel ball were examined on a unidirectional friction and wear tester, and the worn surface morphologies were observed on an AFM. The results showed that MPTS-MPTES/RE films had a low friction coefficient (0.09) and a long wear life (5980 sliding pass) at a light load (50 mN). It indicated that the superior tribological properties of the MPTS-MPTES/RE composite films were attributed to the special characteristic of RE elements, the mobility of the films and good bonding strength.展开更多
FeNiCr alloys with various amounts of La2O3 powders were thermally sprayed onto steel substrate.Electron probe microscopy analysis (EPMA),X-ray photoelectron spectroscopy (XPS),and an Optimol SRV oscillating frict...FeNiCr alloys with various amounts of La2O3 powders were thermally sprayed onto steel substrate.Electron probe microscopy analysis (EPMA),X-ray photoelectron spectroscopy (XPS),and an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration were employed to investigate the properties of the sprayed coatings.The results show that rare earth can refine the microstructure effectively and make the element distribution uniform,which leads to the improvement in the properties of the coatings.Meanwhile,the wear rate of the FeNiCr alloy with 1.5% La2O3 is smaller than those of the other coatings.Interestingly,the rare earth can reduce the friction coefficient and act as a self-lubricant in the oxide debris layer formed on the worn surface in friction.The wear mechanism of the coatings is oxidation wear,and a large amount of counterpart material is transferred to the coatings.展开更多
The macrosegregation behaviors of Al-Sn-Cu ternary immiscible alloy castings and their effects on mechanical and tribological properties were investigated.The results demonstrate that Sn and Cu segregate in the castin...The macrosegregation behaviors of Al-Sn-Cu ternary immiscible alloy castings and their effects on mechanical and tribological properties were investigated.The results demonstrate that Sn and Cu segregate in the casting simultaneously,and the mass fraction of the two elements has a"U"shaped distribution.Significantly,positive and negative segregation occur in the casting,with positive segregation appearing on the top and lower surfaces and negative segregation on the remaining surfaces,with the 1/2 surface(hot node location)having the highest degree of negative segregation.Furthermore,the results of Vickers hardness,tensile strength,and elongation show that Sn and Cu cooperatively affect the mechanical properties of castings.The higher the mass fraction of Sn and Cu elements,the higher the hardness,the greater the tensile strength,and the better the elongation.The findings of the step-by-step loading tests demonstrate that the segregation of Sn and Cu significantly impacts the tribological characteristics of the castings.The higher the mass fraction of Sn and Cu on the sample surface,the better the tribological characteristics.展开更多
This paper reports that DLC (diamond like carbon)/Ti and DLC films were prepared by using pulsed laser arc deposition. R-ray diffraction, Auger electron spectroscopy, Raman spectroscopy, atomic force microscopy, nan...This paper reports that DLC (diamond like carbon)/Ti and DLC films were prepared by using pulsed laser arc deposition. R-ray diffraction, Auger electron spectroscopy, Raman spectroscopy, atomic force microscopy, nanoindenter, spectroscopic ellipsometer, surface profiler and micro-tribometer were employed to study the structure and tribological properties of DLC/Ti and DLC films. The results show that DLC/Ti film, with I(D)/I(G) 0.28 and corresponding to 76% sp3 content calculated by Raman spectroscopy, uniform chemical composition along depth direction, 98 at% content of carbon, hardness 8.2 GPa and Young's modulus 110.5 GPa, compressive stress 6.579 GPa, thickness 46 nm, coefficient of friction 0.08, and critical load 95mN, exhibits excellent mechanical and tribological properties.展开更多
Graphite nanosheets with the average thicknesses ranging from 24.4 to 48.9 nm were prepared with the use of expanded graphite as the raw material by sand milling in deionized water,anhydrous ethanol,glycerol,and 1,4-b...Graphite nanosheets with the average thicknesses ranging from 24.4 to 48.9 nm were prepared with the use of expanded graphite as the raw material by sand milling in deionized water,anhydrous ethanol,glycerol,and 1,4-butanediol,respectively.Anhydrous ethanol favored the formation of graphite nanosheets with a smaller average thickness.When the graphite nanosheets with the content of 2 wt%were added in lithium-based grease,the average friction coefficient decreased by 27%as compared with the pure lithium-based grease.The weld point and load wear index were 1.6 and 1.4 times those of the pure lithium-based grease,respectively.The tribological properties of the graphite nanosheet-containing lithium-based grease were comparable with those of the graphene-containing lithium-based grease.展开更多
Three kinds of crop leaf-surface waxes were extracted from wheat,corn and broomcorn leaves,respectively.The crop leaf-surface waxes as lubricant additives were added to synthetic ester and the friction and wear proper...Three kinds of crop leaf-surface waxes were extracted from wheat,corn and broomcorn leaves,respectively.The crop leaf-surface waxes as lubricant additives were added to synthetic ester and the friction and wear properties of prepared lubricants for steel-aluminum and steel-copper friction pair were investigated in detail.The scanning electron microscopy(SEM)and secondary ion mass spectrometry(SIMS)were employed to explore the friction mechanisms.The results show that crop leaf-surface waxes could successfully reduce the friction and wear of steel-aluminum and steel-copper sliding friction pairs as compared with pure synthetic ester.For example,when the concentration of wheat leaf-surface wax as additive was 2%,the COFs was decreased by 58%;the four additives can be ranked by the anti-wear capability as follows:Corn>Wheat>Glycerol>Broomcorn to steel-aluminum sliding friction pairs.The SIMS spectra of positive and negative ions on the worn surfaces have reduced the exposure of Al and increased short chain ions counts.The good friction reduction and antiwear abilities are attributed to the adsorption or reaction films formed by leafsurface wax on worn surface.展开更多
Carbon nitride films were deposited by a twinned microwave electron cyclotron resonance (ECR) plasma source enhanced unbalanced magnetron sputtering system. The results indicate that the structure of the films is se...Carbon nitride films were deposited by a twinned microwave electron cyclotron resonance (ECR) plasma source enhanced unbalanced magnetron sputtering system. The results indicate that the structure of the films is sensitive to the nitrogen content. The increase in the nitrogen flow ratio leads to an increase in the sp3 content and an improvement of the tribological properties.展开更多
基金Funded by the National Natural Science Foundation of China(No.42102345)the Fundamental Research Funds for the Central Universities(No.2023ZKPYJD03)。
文摘Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V.
基金Project(2007CB607603)supported by the National Basic Research Program of China
文摘Cu matrix composite reinforced with 10%(volume fraction) carbon nanotubes(CNTs/Cu) and pure Cu bulk were prepared by powder metallurgy techniques under the same consolidation processing condition.The effect of electrical current on tribological property of the materials was investigated by using a pin-on-disk friction and wear tester.The results show that the friction coefficient and wear rate of CNTs/Cu composite as well as those of pure Cu bulk increase with increasing the electrical current without exception,and the effect of electrical current is more obvious on tribological property of pure Cu bulk than on that of CNTs/Cu composite;the dominant wear mechanisms are arc erosion wear and plastic flow deformation,respectively;CNTs can improve tribological property of Cu matrix composites with electrical current.
基金Supported by the Fund of National Key Laboratory of High Power Microwave Technology under Grant No 2014-763.xy.kthe National Natural Science Foundation of China under Grant No 21573054the Joint Funds Key Project of the National Natural Science Foundation of China under Grant No U1537214
文摘A Ti-BN complex cathode is made from Ti and h-BN powders by the powder metallurgy technology, and TiBN coating is obtained by plasma immersion ion implantation and deposition with this Ti-BN composite cathode. The TiBN coating shows a self-forming multilayered nanocomposite structure while with relative uniform elemental distributions. High resolution transmission electron microscopy images reveal that the multilayered structure is derived from different grain sizes in the nanocomposite. Due to the existence of h-BN phase, the friction coefficient of the coating is about 0.25.
基金Supported by National Natural Science Foundation of China (Grant No.52275178)Fujian industry university cooperation project (Grant No.2020H6025)。
文摘Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data.
基金This study was supported by the following funds:National Key R&D Program of China(No.2018YFE0207900)Program for Innovation Team of Shaanxi Province(No.2023-CXTD-17)+5 种基金Program of the National Natural Science Foundation of China(No.51835010)Key R&D Program of Guangdong Province(No.2018B090906001)Natural Science Basic Research Program of Shaanxi Province(No.2022JQ-378)China Postdoctoral Science Foundation(No.2020M683458)Fundamental Research Funds for the Central Universities(8)Youth Innovation Team of Shaanxi Universities.
文摘Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis using fused filament fabrication and investigated the effects of printing orientation on its tribological properties using a pin-on-plate tribometer in 25% newborn calf serum.An ultrahigh molecular weight polyethylene transfer film is formed on the surface of PEEK due to the mechanical capture of wear debris by the 3D-printed groove morphology,which is significantly impacted by the printing orientation of PEEK.When the printing orientation was parallel to the sliding direction of friction,the number and size of the transfer film increased due to higher steady stress.This transfer film protected the matrix and reduced the friction coefficient and wear rate of friction pairs by 39.13%and 74.33%,respectively.Furthermore,our findings provide a novel perspective regarding the role of printing orientation in designing knee prostheses,facilitating its practical applications.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
基金Project (2007CB607606) supported by the Ministry of Science and Technology of ChinaProject (50975077) supported by the National Natural Science Foundation of China
文摘Cu nanoparticles surface-modified by dioctylamine dithiocarbamate (DTC8) were synthesized using a two-phase extraction route. The size, morphology and structure of resultant surface-capped Cu nanoparticles (coded as DTC8-Cu) were analyzed by means of X-ray diffraction, transmission electron microscopy and infrared spectrometry. The tribological behavior of DTC8-Cu as an additive in liquid paraffin was evaluated with a four-ball machine, and the surface topography of the wear scar was also examined by means of scanning electron microscopy. Results show that Cu nanoparticles modified by DTC8 have a small particle size and a narrow size distribution. Besides, DTC8-Cu as an additive in liquid paraffin has excellent antiwear ability, due to the deposition of nano-Cu with low melting point on worn steel surface leading to the formation of a self-repairing protective layer thereon.
基金Supported by the Shanghai Municipal Education Commission(06FZ008)Shanghai Municipal Education Commission Key Disciplines(J50603)
文摘In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.
基金Project supported bythe National Natural Science Foundation of China (50275093)
文摘Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites filled with carbon fibers treated with different treatment methods. Tribological properties of the PTFE composites, sliding against GCr15 steel under water-lubricated condition, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the composites were examined using scanning electron microscopy. Experimental results reveal that RE treatment is superior to air oxidation in promoting tribological properties of CF reinforced PTFE (CF/PTFE) composite. The friction and wear properties of PTFE composite filled with RE treated CF are the best of the PTFE composites. RE treatment is more effective than air oxidation to improve the tribological properties of CF/PTFE composite owing to the effective improvement of interfacial adhesion between carbon fibers and PTFE matrix.
基金the National Natural Science Foundation of China (50275093)
文摘The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.
基金supported by the National Natural Science Foundation of China(Grant No.51675153)。
文摘Lanthanum hydroxide/graphene oxide nanocomposites(La(OH)3/GO)modified by octadecylamine(OCA),oleylamine(OLA),and polyvinylpyrrolidone(PVP)were prepared,respectively,as the base oil additives.The dispersion stability of different modified La(OH)3/GO in base oil was studied by means of centrifugation.The tribological properties of oleophilic La(OH)3/GO in base oil were investigated using an UMT ball-disc tribometer.The micro-morphology and chemical composition of the worn surface were characterized by 3 D laser microscope,SEM,EDS,XPS,and Raman spectroscopy,respectively.The wettability performance of the worn surface was also studied based on the contact angle measurements.The test results showed that the OLA-La(OH)3/GO nanocomposites had good dispersion stability in base oil.The anti-wear performance of base oil was improved significantly by the addition of OLA-La(OH)3/GO nanocomposites.The characterizations of worn surface showed that the OLA-La(OH)3/GO nanocomposites could form the metal oxide and graphene protective films effectively on the friction interface and thus increased the oil wettability of the worn surface,thereby resulting in an improved wear resistance.
基金Projects(51775365,51405329) supported by the National Natural Science Foundation of ChinaProject(2015M570239) supported by the China Postdoctoral Science Foundation
文摘This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their applications as high-temperature wear resistant mechanical parts.Additionally,the wear mechanism of alloys is evaluated.The tribological properties of alloys are systematically studied by using a ball-on-disc tribometer at 10 N and 0.20 m/s from RT to 800°C sliding against Si3N4 ceramic ball.The boron element greatly improves the wear resistance of specimens as compared with that of unreinforced specimen.The friction coefficients of specimens decrease with increasing of testing temperature.The wear rates of Fe-Cr-B alloys decrease firstly and then raise with the increase of boron content.The specific wear rates of specimens with boron are 1/10 of the unreinforced specimen.Fe-21wt%Cr-7wt%B keeps the best tribological properties at high temperature.
基金Project supported by the National Key Basic Research Program of China (Grant No 2003CB716201), the Major Research Plan of the National Natural Science Foundation of China (Grant No 50390060), the National Natural Science Foundation of China (Grant No 50575121), the National Science Foundation for Post-doctoral Scientists of China (Grant No 20060390064), the Electro- Mechanic Technology Foundation of NSK Ltd. of Japan, the Scientific Startup Research Foundation for the New Staff of Dallan University of Technology, and the Open Foundation of Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, Dalian University of Technology (Grant No JMTZ200703).
文摘A novel method, pulsed laser arc deposition combining the advantages of pulsed laser deposition and cathode vacuum arc techniques, was used to deposit the diamond-like carbon (DLC) nanofilms with different thicknesses. Spectroscopic ellipsometer, Auger electron spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and multi-functional friction and wear tester were employed to investigate the physical and tribological properties of the deposited films. The results show that the deposited films are amorphous and the sp2, sp3 and C-O bonds at the top surface of the films are identified. The Raman peak intensity and surface roughness increase with increasing film thickness. Friction coefficients are about 0.1, 0.15, 0.18, when the film thicknesses are in the range of 17-21 nm, 30-57 nm, 67-123 nm, respectively. This is attributed to the united effects of substrate and surface roughness. The wear mechanism of DLC films is mainly abrasive wear when film thickness is in the range of 17-41 nm, while it transforms to abrasive and adhesive wear, when the film thickness lies between 72 and 123 nm.
基金supported by the National Natural Science Foundation of China (50475023)
文摘γ-mercapto-propyl trimethoxysilane (MPTS) and γ-methacryloxy propyltrimethoxysilane (MPTES) were self-assembled on a hy- droxylated glass substrate to form a two-dimensional organic monolayer (MPTS-MPTES SAM). The terminal thiol groups (-SH) in the MPTS-MPTES SAM were in-situ oxidized into sulfonic acid groups (-SO3H) to endow the film with good chemisorption ability. Then rare earth (RE) (lanthanum-based) composite thin films were prepared by self-assembly technique based on the as-prepared SAM, taking advantage of the chemisorption ability of the sulfonic acid groups. Automatic force microscope (AFM), X-ray photoelectron spectrometry (XPS), contact angle measurement and ellipsometer were used to characterize MPTS-MPTES/RE composite films. The macrofriction and wear behaviors of the films sliding against an AISI-52100 steel ball were examined on a unidirectional friction and wear tester, and the worn surface morphologies were observed on an AFM. The results showed that MPTS-MPTES/RE films had a low friction coefficient (0.09) and a long wear life (5980 sliding pass) at a light load (50 mN). It indicated that the superior tribological properties of the MPTS-MPTES/RE composite films were attributed to the special characteristic of RE elements, the mobility of the films and good bonding strength.
基金supported by the Natural Science Foundation of Gansu Province, China (No. 0710RJZA071)
文摘FeNiCr alloys with various amounts of La2O3 powders were thermally sprayed onto steel substrate.Electron probe microscopy analysis (EPMA),X-ray photoelectron spectroscopy (XPS),and an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration were employed to investigate the properties of the sprayed coatings.The results show that rare earth can refine the microstructure effectively and make the element distribution uniform,which leads to the improvement in the properties of the coatings.Meanwhile,the wear rate of the FeNiCr alloy with 1.5% La2O3 is smaller than those of the other coatings.Interestingly,the rare earth can reduce the friction coefficient and act as a self-lubricant in the oxide debris layer formed on the worn surface in friction.The wear mechanism of the coatings is oxidation wear,and a large amount of counterpart material is transferred to the coatings.
基金This research was financially supported by the National Natural Science Foundation of China(No.51575151 and No.52005005)the Science and Technology Project of Anhui Province,China(No.1501021006).
文摘The macrosegregation behaviors of Al-Sn-Cu ternary immiscible alloy castings and their effects on mechanical and tribological properties were investigated.The results demonstrate that Sn and Cu segregate in the casting simultaneously,and the mass fraction of the two elements has a"U"shaped distribution.Significantly,positive and negative segregation occur in the casting,with positive segregation appearing on the top and lower surfaces and negative segregation on the remaining surfaces,with the 1/2 surface(hot node location)having the highest degree of negative segregation.Furthermore,the results of Vickers hardness,tensile strength,and elongation show that Sn and Cu cooperatively affect the mechanical properties of castings.The higher the mass fraction of Sn and Cu elements,the higher the hardness,the greater the tensile strength,and the better the elongation.The findings of the step-by-step loading tests demonstrate that the segregation of Sn and Cu significantly impacts the tribological characteristics of the castings.The higher the mass fraction of Sn and Cu on the sample surface,the better the tribological characteristics.
基金Project supported by the National Key Basic Research Program of China (Grant No 2003CB716201) and the National Natural Science Foundation of China (Grant No 50575121) and Electro-Mechmaic Technology Advancing Foundation of NSK Ltd of Japan.
文摘This paper reports that DLC (diamond like carbon)/Ti and DLC films were prepared by using pulsed laser arc deposition. R-ray diffraction, Auger electron spectroscopy, Raman spectroscopy, atomic force microscopy, nanoindenter, spectroscopic ellipsometer, surface profiler and micro-tribometer were employed to study the structure and tribological properties of DLC/Ti and DLC films. The results show that DLC/Ti film, with I(D)/I(G) 0.28 and corresponding to 76% sp3 content calculated by Raman spectroscopy, uniform chemical composition along depth direction, 98 at% content of carbon, hardness 8.2 GPa and Young's modulus 110.5 GPa, compressive stress 6.579 GPa, thickness 46 nm, coefficient of friction 0.08, and critical load 95mN, exhibits excellent mechanical and tribological properties.
基金financially supported by Wuxi Municipal Bureau on Science and Technology,China(Wuxi 530 project,20130529010040)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX180734)。
文摘Graphite nanosheets with the average thicknesses ranging from 24.4 to 48.9 nm were prepared with the use of expanded graphite as the raw material by sand milling in deionized water,anhydrous ethanol,glycerol,and 1,4-butanediol,respectively.Anhydrous ethanol favored the formation of graphite nanosheets with a smaller average thickness.When the graphite nanosheets with the content of 2 wt%were added in lithium-based grease,the average friction coefficient decreased by 27%as compared with the pure lithium-based grease.The weld point and load wear index were 1.6 and 1.4 times those of the pure lithium-based grease,respectively.The tribological properties of the graphite nanosheet-containing lithium-based grease were comparable with those of the graphene-containing lithium-based grease.
基金This work is supported by the National Natural Science Foundation of China(Grant 51575181).
文摘Three kinds of crop leaf-surface waxes were extracted from wheat,corn and broomcorn leaves,respectively.The crop leaf-surface waxes as lubricant additives were added to synthetic ester and the friction and wear properties of prepared lubricants for steel-aluminum and steel-copper friction pair were investigated in detail.The scanning electron microscopy(SEM)and secondary ion mass spectrometry(SIMS)were employed to explore the friction mechanisms.The results show that crop leaf-surface waxes could successfully reduce the friction and wear of steel-aluminum and steel-copper sliding friction pairs as compared with pure synthetic ester.For example,when the concentration of wheat leaf-surface wax as additive was 2%,the COFs was decreased by 58%;the four additives can be ranked by the anti-wear capability as follows:Corn>Wheat>Glycerol>Broomcorn to steel-aluminum sliding friction pairs.The SIMS spectra of positive and negative ions on the worn surfaces have reduced the exposure of Al and increased short chain ions counts.The good friction reduction and antiwear abilities are attributed to the adsorption or reaction films formed by leafsurface wax on worn surface.
基金supported by National Natural Science Foundation of China (No.50390060)
文摘Carbon nitride films were deposited by a twinned microwave electron cyclotron resonance (ECR) plasma source enhanced unbalanced magnetron sputtering system. The results indicate that the structure of the films is sensitive to the nitrogen content. The increase in the nitrogen flow ratio leads to an increase in the sp3 content and an improvement of the tribological properties.