期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink 被引量:4
1
作者 Hongyan CHEN Youcheng ZENG +2 位作者 Hu DING Siukai LAI Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期389-406,共18页
With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm... With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES. 展开更多
关键词 ASYMMETRIC nonlinear energy sink(NES) tristable vibration control po-tential barrier
下载PDF
Design,modeling and experiments of broadband tristable galloping piezoelectric energy harvester 被引量:17
2
作者 Junlei Wang Linfeng Geng +3 位作者 Shengxi Zhou Zhien Zhang Zhihui Lai Daniil Yurchenko 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第3期592-605,共14页
Galloping based piezoelectric energy harvester is a kind of micro-environmental energy harvesting device based on flowinduced vibrations.A novel tristable galloping-based piezoelectric energy harvester is constructed ... Galloping based piezoelectric energy harvester is a kind of micro-environmental energy harvesting device based on flowinduced vibrations.A novel tristable galloping-based piezoelectric energy harvester is constructed by introducing a nonlinear magnetic force on the traditional galloping-based piezoelectric energy harvester.Based on Euler-Bernoulli beam theory and Kirchhoff’s law,the corresponding aero-electromechanical model is proposed and validated by a series of wind tunnel experiments.The parametric study is performed to analyse the response of the tristable galloping-based piezoelectric energy harvester.Numerical results show that comparing with the galloping-based piezoelectric energy harvester,the mechanism of the tristable galloping-based piezoelectric energy harvester is more complex.With the increase of a wind speed,the vibration of the bluff body passes through three branches:intra-well oscillations,chaotic oscillations,and inter-well oscillations.The threshold wind speed of the presented harvester for efficiently harvesting energy is 1.0 m/s,which is decreased by 33% compared with the galloping-based piezoelectric energy harvester.The maximum output power of the presented harvester is 0.73 mW at 7.0 m/s wind speed,which is increased by 35.3%.Compared with the traditional galloping-based piezoelectric energy harvester,the presented tristable galloping-based piezoelectric energy harvester has a better energy harvesting performance from flow-induced vibrations. 展开更多
关键词 Energy harvesting GALLOPING tristable Flow induced vibrations
原文传递
Evaluation of the Double Snap-Through Mechanism on the Wave Energy Converter’s Performance 被引量:3
3
作者 Bingqi Liu Carlos Levi +2 位作者 Segen F.Estefen Zhijia Wu Menglan Duan 《Journal of Marine Science and Application》 CSCD 2021年第2期268-283,共16页
Lower efficiencies induce higher energy costs and pose a barrier to wave energy devices'commercial applications.Therefore,the efficiency enhancement of wave energy converters has received much attention in recent ... Lower efficiencies induce higher energy costs and pose a barrier to wave energy devices'commercial applications.Therefore,the efficiency enhancement of wave energy converters has received much attention in recent decades.The reported research presents the double snap-through mechanism applied to a hemispheric point absorber type wave energy converter(WEC)to improve the energy absorption perfomance.The double snap-through mechanism comprises four oblique springs mounted in an X-configuration.This provides the WEC with different dynamic stability behaviors depending on the particular geometric and physical parameters employed.The efficiency of these different WEC behaviors(linear,bistable,and tristable)was initially evaluated under the action of regular waves.The results for bistable or tristable responses indicated significant improvements in the WEC's energy capture efficiency.Furthermore,the WEC frequency bandwidth was shown to be significantly enlarged when the tristable mode was in operation.However,the corresponding tristable trajectory showed intra-well behavior in the middle potential well,which induced a more severe low-energy absorption when a small wave amplitude acted on the WEC compared to when the bistable WEC was employed.Nevertheless,positive effects were observed when appropriate initial conditions were imposed.The results also showed that for bistable or tristable responses,a suitable spring stiffness may cause the buoy to oscillate in high energy modes. 展开更多
关键词 Wave energy converter Point absorber Double snap-through mechanism Bistable dynamic behavior tristable dynamic behavior
下载PDF
Disturbance rejection and performance enhancement of perturbed tri-stable energy harvesters by adaptive finite-time disturbance observer
4
作者 Shitong Fang Naser Padar +2 位作者 Mohammad Javad Mirzaei Shengxi Zhou Wei-Hsin Liao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第8期132-148,共17页
Tristable energy harvesters(TEHs)have been proposed to achieve broad frequency bandwidth and superior low-frequency energy harvesting performance.However,due to the coexistence of three potential wells and the sensiti... Tristable energy harvesters(TEHs)have been proposed to achieve broad frequency bandwidth and superior low-frequency energy harvesting performance.However,due to the coexistence of three potential wells and the sensitivity to system conditions and external disturbances,the desired high-amplitude inter-well oscillation in the TEHs may be replaced by the chaotic or intra-well oscillations with inferior energy output.Specifically,the chaos has an unpredictable trajectory and may cause system damages,lessen the structural durability as well as require a more complicated circuit for power management.Therefore,in this paper,we firstly propose an adaptive finite-time disturbance observer(AFTDO)for performance enhancement of TEHs by detecting the external disturbances that induce the chaos,and reject them for the recovery of the desired inter-well motion.The proposed AFTDO eliminates the need to know in advance the upper bounds of imposed perturbations in conventional observers by means of the proposed adaptive protocols,leading to the higher efficacy of estimation.The mathematical model of the piezoelectric TEH system and the AFTDO is provided.To demonstrate the effectiveness of the AFTDO,a series of numerical simulations have been performed.Results show that for both cases with sinusoidal and impulsive disturbances,the AFTDO can successfully track the trajectories of the disturbance signals with the adaptive gain,and reject the disturbance to enable the TEH to sustain the periodic inter-well oscillation with effective energy harvesting performance. 展开更多
关键词 tristable energy harvesters Finite-time disturbance observer Sinusoidal and impulsive disturbances CHAOS Inter-well oscillation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部